############### 14 f I. test KFServing ###################### # sanity check the KFServing deployment # get the cluster credential gcloud container clusters get-credentials $GKE_CLUSTER_NAME # Git clone the repo (on local env) # we will use the repo when we will santiy check the KFServing deployment mkdir $HOME/Downloads/kfs cd $HOME/Downloads/kfs git clone https://github.com/kubeflow/kfserving.git . echo $KFSERVING_NAMESPACE echo $KFSERVING_SAMPLE echo $ISTIO_SERVICE echo $ISTIO_NAMESPACE export SERVICE_HOSTNAME=$(kubectl get inferenceservice $KFSERVING_SAMPLE \ -n $KFSERVING_NAMESPACE -o jsonpath='{.status.default.predictor.host}') echo $SERVICE_HOSTNAME export INGRESS_HOST=$(kubectl get svc -l istio=$ISTIO_SERVICE \ -n $ISTIO_NAMESPACE -o jsonpath='{.items[0].status.loadBalancer.ingress[0].ip}') echo $INGRESS_HOST # check if the flowers-sample (a TensorFlow model) model is ready to accept request curl -H "Host: ${SERVICE_HOSTNAME}" "http://$INGRESS_HOST/v1/models/$KFSERVING_SAMPLE" # post data to the endpoint - use the sample file from the KFServing git repo # from the kfserving git repo for flowers-sample (a TensorFlow model) curl -H "Host: ${SERVICE_HOSTNAME}" "http://$INGRESS_HOST/v1/models/$KFSERVING_SAMPLE:predict" -d @$HOME/Downloads/kfs/docs/samples/tensorflow/input.json # end of sanity check of the KFServing