Skip to content

Instantly share code, notes, and snippets.

@dtt101
Forked from JulianaFontolan/Dockerfile
Created November 30, 2024 06:32
Show Gist options
  • Save dtt101/72e70f2c916237da15caaccf22b1a6be to your computer and use it in GitHub Desktop.
Save dtt101/72e70f2c916237da15caaccf22b1a6be to your computer and use it in GitHub Desktop.
Deploying your own artificial intelligence model with Amazon Sagemaker
%%writefile Dockerfile
FROM python:3.7-buster
# Set a docker label to advertise multi-model support on the container
LABEL com.amazonaws.sagemaker.capabilities.multi-models=false
# Set a docker label to enable container to use SAGEMAKER_BIND_TO_PORT environment variable if present
LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true
RUN apt-get update -y && apt-get -y install --no-install-recommends default-jdk
RUN rm -rf /var/lib/apt/lists/*
RUN pip --no-cache-dir install multi-model-server sagemaker-inference sagemaker-training
RUN pip --no-cache-dir install pandas numpy scipy scikit-learn gensim sagemaker
RUN pip --no-cache-dir install octis
ENV PYTHONUNBUFFERED=TRUE
ENV PYTHONDONTWRITEBYTECODE=TRUE
ENV PYTHONPATH="/opt/ml/code:${PATH}"
ENV AWS_DEFAULT_REGION='us-east-1'
COPY main.py /opt/ml/code/main.py
COPY train.py /opt/ml/code/train.py
COPY handler.py /opt/ml/code/serving/handler.py
ENTRYPOINT ["python", "/opt/ml/code/main.py"]
%%writefile handler.py
import os
import sys
import joblib
from sagemaker_inference.default_inference_handler import DefaultInferenceHandler
from sagemaker_inference.default_handler_service import DefaultHandlerService
from sagemaker_inference import content_types, errors, transformer, encoder, decoder
class HandlerService(DefaultHandlerService, DefaultInferenceHandler):
def __init__(self):
op = transformer.Transformer(default_inference_handler=self)
super(HandlerService, self).__init__(transformer=op)
## Loads the model from the disk
def default_model_fn(self, model_dir):
print('estou em model_fn')
model_filename = os.path.join(model_dir, "pipeline_topic_modeling.joblib")
return joblib.load(open(model_filename, "rb"))
## Parse and check the format of the input data
def default_input_fn(self, input_data, content_type):
print('estou em input_fn')
if content_type != "text/csv":
raise Exception("Invalid content-type: %s" % content_type)
return decoder.decode(input_data, content_type).reshape(1,-1)
## Run our model and do the prediction
def default_predict_fn(self, mo_data, model):
print('estou em predict_fn')
import numpy as np
import pandas as pd
d = {'messageText_mo': [mo_data[0][0].decode('utf-8')]}
mo_pd = pd.DataFrame(d)
result = model.transform(mo_pd)
topicos = [np.argsort(each)[::-1][0:3] for each in result][0][0]
return np.array(topicos)
## Gets the prediction output and format it to be returned to the user
def default_output_fn(self, prediction, accept):
import numpy as np
print('estou em output_fn')
if accept != "text/csv":
raise Exception("Invalid accept: %s" % accept)
#return encoder.encode(prediction, accept)
return prediction.tolist()
%%writefile main.py
import train
import argparse
import sys
import os
import traceback
from sagemaker_inference import model_server
from sagemaker_training import environment
if __name__ == "__main__":
if len(sys.argv) < 2 or ( not sys.argv[1] in [ "serve", "train" ] ):
raise Exception("Invalid argument: you must inform 'train' for training mode or 'serve' predicting mode")
if sys.argv[1] == "train":
env = environment.Environment()
parser = argparse.ArgumentParser()
parser.add_argument("--topk", type=int, default=3)
parser.add_argument("--bucket", type=str, default='topicmodeling')
parser.add_argument("--subfolder", type=str, default='sagemaker')
parser.add_argument("--metric", type=str, default='Diversity')
parser.add_argument("--train", type=str, default=env.channel_input_dirs["train"])
parser.add_argument("--model-dir", type=str, default=env.model_dir)
parser.add_argument("--output-dir", type=str, default=env.output_dir)
args,unknown = parser.parse_known_args()
train.start(args)
else:
model_server.start_model_server(handler_service="serving.handler")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment