Skip to content

Instantly share code, notes, and snippets.

@ednisley
Created June 10, 2020 23:11
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save ednisley/75be3189d032c10f02f8e5f3b847ef56 to your computer and use it in GitHub Desktop.
Save ednisley/75be3189d032c10f02f8e5f3b847ef56 to your computer and use it in GitHub Desktop.
OpenSCAD source code: Frame holding square glass tiles over SK6812 LED PCBs
// Illuminated Tile Grid
// Ed Nisley - KE4ZNU
// 2020-05
/* [Configuration] */
Layout = "Build"; // [Cell,CellArray,MCU,Base,Show,Build]
Shape = "Square"; // [Square, Pyramid, Cone]
Cells = [2,2];
CellDepth = 15.0;
Inserts = true;
SupportInserts = true;
/* [Hidden] */
ThreadThick = 0.25;
ThreadWidth = 0.40;
HoleWindage = 0.2;
function IntegerMultiple(Size,Unit) = Unit * ceil(Size / Unit);
Protrusion = 0.1; // make holes end cleanly
ID = 0;
OD = 1;
LENGTH = 2;
Tile = [25.0 + 0.1,25.0 + 0.1,4.0];
WallThick = 4*ThreadWidth;
FloorThick = 3.0;
Flange = [2*ThreadWidth,2*ThreadWidth,0]; // ridge supporting tile
Separator = [3*ThreadWidth,3*ThreadWidth,Tile.z - 1]; // between tiles
Screw = [3.0,6.0,3.5]; // M3 SHCS, OD=head, LENGTH=head
Insert = [3.0,4.2,8.0]; // threaded brass insert
ScrewRecess = Screw[LENGTH] + 4*ThreadThick;
LEDPCB = [9.6,9.6,2.9]; // round SK6812, squared-off sides
LED = [5.0 + 2*HoleWindage,5.0 + 2*HoleWindage,1.3];
LEDOffset = [0.0,0.0,0.0]; // if offset from PCB center
CellOAL = [Tile.x,Tile.y,0] + Separator + [0,0,CellDepth] + [0,0,FloorThick];
ArrayOAL = [Cells.x*CellOAL.x,Cells.y*CellOAL.y,CellOAL.z]; // just the LED cells
BlockOAL = ArrayOAL + [2*WallThick,2*WallThick,0]; // LED cells + exterior wall
echo(str("Block OAL: ",BlockOAL));
InsertOC = ArrayOAL - [Insert[OD],Insert[OD],0] - [WallThick,WallThick,0];
echo(str("Insert OC: ",InsertOC));
TapeThick = 1.0;
Arduino = [44.0,18.0,8.0 + TapeThick]; // Arduino Nano to top of USB Mini-B plug
USBPlug = [15.0,11.0,9.0]; // USB Mini-B plug insulator
USBOffset = [0,0,5.0]; // offset from PCB base
WiringSpace = 3.5;
WiringBay = [(Cells.x - 1)*CellOAL.x + LEDPCB.x,(Cells.y - 1)*CellOAL.y + LEDPCB.x,WiringSpace];
PlateOAL = [BlockOAL.x,BlockOAL.y,FloorThick + Arduino.z + WiringSpace]; // allow wiring above Arduino
echo(str("Base Plate: ",PlateOAL));
echo(str("Screw length: ",(PlateOAL.z - ScrewRecess) + Insert.z/2," to ",(PlateOAL.z - ScrewRecess) + Insert.z));
LegendRecess = 1*ThreadThick;
//------------------------
module PolyCyl(Dia,Height,ForceSides=0) { // based on nophead's polyholes
Sides = (ForceSides != 0) ? ForceSides : (ceil(Dia) + 2);
FixDia = Dia / cos(180/Sides);
cylinder(d=(FixDia + HoleWindage),h=Height,$fn=Sides);
}
//-----------------------
// Base and optics in single tile
module LEDCone() {
hull() {
translate([0,0,CellDepth + Tile.z/2])
cube(Tile - 2*[Flange.x,Flange.y,0],center=true);
if (Shape == "Square") {
translate([0,0,LEDPCB.z/2])
cube([Tile.x,Tile.y,LEDPCB.z] - 2*[Flange.x,Flange.y,0],center=true);
}
else if (Shape == "Pyramid") {
translate([0,0,LEDPCB.z/2])
cube(LEDPCB,center=true);
}
else if (Shape == "Cone") {
translate([0,0,LEDPCB.z/2])
cylinder(d=1.0*LEDPCB.x,h=LED.z,center=true);
}
else {
echo(str("Whoopsie! Invalid Shape: ",Shape));
cube(5);
}
}
}
// One complete LED cell
module LEDCell() {
difference() {
translate([0,0,CellOAL.z/2])
cube(CellOAL + [Protrusion,Protrusion,0],center=true); // force overlapping adjacent sides!
translate([0,0,CellOAL.z - Separator.z + Tile.z/2])
cube(Tile,center=true);
translate([0,0,LEDPCB.z])
LEDCone();
// cube([LED.x,LED.y,CellOAL.z],center=true);
translate(-LEDOffset + [0,0,-CellOAL.z/2])
rotate(180/8)
PolyCyl(LEDPCB.x,CellOAL.z,8);
}
}
// The whole array of cells
module CellArray() {
difference() {
union() {
translate([CellOAL.x/2 - Cells.x*CellOAL.x/2,CellOAL.y/2 - Cells.y*CellOAL.y/2,0])
for (i=[0:Cells.x - 1], j=[0:Cells.y - 1])
translate([i*CellOAL.x,j*CellOAL.y,0])
LEDCell();
if (Inserts) // bosses
for (i=[-1,1], j=[-1,1])
translate([i*InsertOC.x/2,j*InsertOC.y/2,0])
rotate(180/8)
cylinder(d=Insert[OD] + 2*WallThick,h=Insert[LENGTH],$fn=8);
}
if (Inserts) // holes
for (i=[-1,1], j=[-1,1])
translate([i*InsertOC.x/2,j*InsertOC.y/2,-Protrusion])
rotate(180/8)
PolyCyl(Insert[OD],Insert[LENGTH] + FloorThick + Protrusion,8);
}
difference() {
translate([0,0,CellOAL.z/2])
cube(BlockOAL,center=true);
translate([0,0,CellOAL.z])
cube(ArrayOAL + [0,0,2*CellOAL.z],center=true);
}
}
// Arduino bounding box
// Origin at center bottom of PCB
module Controller() {
union() {
translate([0,0,Arduino.z/2])
cube(Arduino,center=true);
translate([Arduino.x/2 - Protrusion,-USBPlug.y/2,USBOffset.z + TapeThick - USBPlug.z/2])
cube(USBPlug + [Protrusion,0,0],center=false);
}
}
// Baseplate
module BasePlate() {
difference() {
translate([0,0,PlateOAL.z/2])
cube(PlateOAL,center=true);
translate([PlateOAL.x/2 - Arduino.x/2 - 2*WallThick,0,FloorThick])
Controller();
translate([PlateOAL.x/2 - Arduino.x/2 - 2*WallThick,0,FloorThick + PlateOAL.z/2])
cube([Arduino.x - 2*2.0,WiringBay.y,PlateOAL.z],center=true); // cutouts beside MCU
translate([0,0,PlateOAL.z - WiringBay.z + PlateOAL.z/2 - Protrusion])
cube([PlateOAL.x - 2*WallThick,WiringBay.y,PlateOAL.z],center=true); // cutout above MCU
translate([0,0,PlateOAL.z - WiringBay.z + PlateOAL.z/2 - Protrusion])
cube([WiringBay.x,PlateOAL.y - 2*WallThick,PlateOAL.z],center=true); // cutout above MCU
if (Inserts)
for (i=[-1,1], j=[-1,1])
translate([i*InsertOC.x/2,j*InsertOC.y/2,-Protrusion])
rotate(180/8) {
PolyCyl(Screw[ID],2*PlateOAL.z,8);
PolyCyl(Screw[OD],ScrewRecess + Protrusion,8);
}
cube([45,17.0,2*LegendRecess],center=true);
}
linear_extrude(height=2*LegendRecess) {
translate([0,1])
rotate(-0*90) mirror([1,0,0])
text(text="Ed Nisley",size=6,font="Arial:style:Bold",halign="center");
translate([0,-6.5])
rotate(-0*90) mirror([1,0,0])
text(text="softsolder.com",size=4.5,font="Arial:style:Bold",halign="center");
}
Fin = [Screw[OD]/2 - 1.5*ThreadWidth,2*ThreadWidth,ScrewRecess - ThreadThick];
if (Inserts && SupportInserts)
color("Yellow")
for (i=[-1,1], j=[-1,1])
translate([i*InsertOC.x/2,j*InsertOC.y/2,0]) {
rotate(180/8)
cylinder(d=6*ThreadWidth,h=ThreadThick,$fn=8);
for (a=[0:90:360])
rotate(a)
translate([Fin.x/2 + ThreadWidth/2,0,(ScrewRecess - ThreadThick)/2])
cube(Fin,center=true);
}
}
//-----------------------
// Build things
if (Layout == "Cell")
LEDCell();
else if (Layout == "CellArray")
CellArray();
else if (Layout == "MCU")
Controller();
else if (Layout == "Base")
BasePlate();
else if (Layout == "Show") {
translate([0,0,3*PlateOAL.z])
CellArray();
BasePlate();
translate([PlateOAL.x/2 - Arduino.x/2 - 2*WallThick,0,FloorThick])
color("Orange",0.3)
Controller();
}
else if (Layout == "Build") union() {
translate([0,0.6*BlockOAL.y,0])
CellArray();
translate([0,-0.6*BlockOAL.x,0])
rotate(90)
BasePlate();
}
@ednisley
Copy link
Author

More details on my blog at https://wp.me/poZKh-98y

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment