neerc I
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cstdio> | |
#include <cstring> | |
#include <iostream> | |
#include <algorithm> | |
#include <set> | |
#include <map> | |
#include <vector> | |
#include <bitset> | |
#include <queue> | |
#include <sstream> | |
using namespace std; | |
#define all(v) (v).begin(), (v).end() | |
#define iter(v) __typeof((v).begin()) | |
#define foreach(it, v) for (iter(v) it = (v).begin(); it != (v).end(); it++) | |
#define pb push_back | |
#define mp make_pair | |
#define rep(i, n) for (int i = 0; i < (int)(n); i++) | |
typedef long long ll; | |
ll sqr(ll x) {return x * x;} | |
template <class T> void checkmax(T &t, T x){if (x > t) t = x;} | |
template <class T> void checkmin(T &t, T x){if (x < t) t = x;} | |
template <class T> void _checkmax(T &t, T x){if (t == -1 || x > t) t = x;} | |
template <class T> void _checkmin(T &t, T x){if (t == -1 || x < t) t = x;} | |
ll power_mod(ll a, int b, int p) { | |
ll ret = 1; | |
for (; b; b >>= 1) { | |
if (b & 1) ret = ret * a % p; | |
a = a * a % p; | |
} | |
return ret; | |
} | |
template <class T>T ext_gcd(T a,T b,T& x,T& y){ | |
T t,ret; | |
if (!b){ | |
x=1,y=0; | |
return a; | |
} | |
ret=ext_gcd(b,a%b,x,y); | |
t=x,x=y,y=t-a/b*y; | |
return ret; | |
} | |
const int N = 100005; | |
const int M = 405; | |
int n, P, Q; | |
ll w[N]; | |
int a[N], b[N]; | |
int mat[M][M]; | |
int f[M / 2][M][M]; | |
int choose[M / 2][M][M]; | |
bool s[N]; | |
void rec(int i, int bestl, int bestr) { | |
while (i) { | |
int mask = choose[i][bestl][bestr]; | |
s[i] = mask & 1; | |
s[n - i + 1] = mask & 2; | |
bestl -= mask & 1; | |
bestr -= !!(mask & 2); | |
i--; | |
} | |
} | |
void dp() { | |
n = P + Q; | |
memset(f, 0xff, sizeof(f)); | |
f[0][0][0] = 0; | |
for (int i = 1; i * 2 <= n; i++) { | |
rep (j, i) { | |
rep (k, i) { | |
if (f[i - 1][j][k] != -1) { | |
rep (mask, 4) { | |
int l = j + (mask & 1); | |
int r = k + (!!(mask & 2)); | |
if (l + r > P) continue; | |
int tmp = f[i - 1][j][k]; | |
tmp += mat[l][i]; | |
if (!(i == n - i)) tmp += mat[P - l][n - i]; | |
if (l != r) { | |
tmp += mat[r][i]; | |
if (!(i == n - i)) tmp += mat[P - r][n - i]; | |
} | |
if (tmp > f[i][l][r]) { | |
f[i][l][r] = tmp; | |
choose[i][l][r] = mask; | |
} | |
} | |
} | |
} | |
} | |
} | |
if (n & 1) { | |
int ans = -1; | |
int bestl, bestr; | |
rep (i, P + 1) { | |
if (f[n / 2][i][P - i] + mat[i][n / 2 + 1] + mat[P - i][n / 2 + 1] - (i == P - i ? mat[i][n / 2 + 1] : 0) > ans) { | |
ans = f[n / 2][i][P - i] + mat[i][n / 2 + 1] + mat[P - i][n / 2 + 1] - (i == P - i ? mat[i][n / 2 + 1] : 0); | |
bestl = i; | |
bestr = P - i; | |
} | |
if (P - i > 0 | |
&& f[n / 2][i][P - i - 1] + mat[i + 1][n / 2 + 1] + mat[P - i][n / 2 + 1] - (i + 1 == P - i ? mat[i + 1][n / 2 + 1] : 0) > ans) { | |
ans = f[n / 2][i][P - i - 1] + mat[i + 1][n / 2 + 1] + mat[P - i][n / 2 + 1] - (i + 1 == P - i ? mat[i + 1][n / 2 + 1] : 0); | |
bestl = i; | |
bestr = P - i - 1; | |
} | |
} | |
s[n / 2 + 1] = P - bestl - bestr; | |
rec(n / 2, bestl, bestr); | |
} else { | |
int ans = -1; | |
int bestl, bestr; | |
rep (i, P + 1) { | |
if (f[n / 2][i][P - i] > ans) { | |
ans = f[n / 2][i][P - i]; | |
bestl = i; | |
bestr = P - i; | |
} | |
} | |
rec(n / 2, bestl, bestr); | |
} | |
for (int i = 1; i <= n; i++) | |
putchar(s[i] ? 'P' : 'Q'); | |
puts(""); | |
} | |
const int A = 9705276 / 2; | |
const int B = 12805858 / 2; | |
int main() { | |
freopen("identification.in", "r", stdin); | |
freopen("identification.out", "w", stdout); | |
ll x, y; | |
ext_gcd<ll>(A, B, x, y); | |
scanf("%d", &n); | |
ll maxpeak = -1; | |
rep (i, n) { | |
double x; | |
scanf("%lf", &x); | |
w[i] = (ll)(x * 100000 + 0.5); | |
checkmax(maxpeak, w[i]); | |
} | |
maxpeak /= 2; | |
P = (maxpeak * x % B + B) % B; | |
Q = (maxpeak - A * P) / B; | |
int m = 0; | |
rep (i, n) { | |
if (w[i] & 1 || (w[i] / 2 * x % B + B) % B > P || (w[i] / 2 - A * P) / B > Q) continue; | |
w[m++] = w[i]; | |
} | |
n = m; | |
memset(mat, 0, sizeof(mat)); | |
rep (i, n) { | |
a[i] = (w[i] / 2 * x % B + B) % B; | |
b[i] = (w[i] / 2 - A * a[i]) / B; | |
mat[a[i]][a[i] + b[i]] = 1; | |
} | |
dp(); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment