Skip to content

Instantly share code, notes, and snippets.

%tensorflow_version 1.x
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
import math
import pickle
import torch
import torch.nn.functional as F
def gelu(x):
'''Gaussian Error Linear Unit - a smooth version of RELU'''
cdf = 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
return x * cdf
2019-03-12 02:49:54,679 : set device 0 out of 2 cuda devices
2019-03-12 02:49:54,680 : Namespace(checkpoint=None, data_path='./data', dataset='CIFAR10', device=0, e_increasing_layer_size=False, e_layer_size=1000, e_number_of_hidden_layers=3, epochs=100000000000000000000, gamma=1.0, initial_weights=None, lamBda=0.0, lr_init=0.0001, model='ResNet32', momentum=0.0, num_workers=4, resume_checkpoint=False, save_checkpoint=False, seed=2092, train_log_freq=40, w_batch_size=10, weight_sharing=False, wg_number_of_hidden_layers=2, with_adam=True, with_lr_plateau_schedule=False, with_norm=2, with_residual=True, x_batch_size=256, z_batch_size=20, z_dim=500, z_std=1.0)
2019-03-12 02:50:01,291 : {'weight_sharing': False, 'input_noise_size': 500, 'with_bias': True, 'wg_number_of_hidden_layers': 2, 'wg_hidden_layer_size_formula': <function train.<locals>.wg_hidden_layer_size_formula at 0x7f337b6072f0>, 'with_batchnorm': True, 'e_layer_size': 1000, 'with_residual': True, 'with_layernorm': False, 'e_increasing_layer_size': Fal
Traceback (most recent call last):
File "/home/enijkamp/enijkamp@g.ucla.edu/research_students/yu_wgen/cifar10_resnet/train_wgen_resnet_multigpu.py", line 709, in <module>
train(args_override, output_dir, setup_logging('main', output_dir, console=True), return_dict)
File "/home/enijkamp/enijkamp@g.ucla.edu/research_students/yu_wgen/cifar10_resnet/train_wgen_resnet_multigpu.py", line 503, in train
w = hypernet(z)
File "/home/enijkamp/enijkamp@g.ucla.edu/research_students/yu_wgen/venv/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "/home/enijkamp/enijkamp@g.ucla.edu/research_students/yu_wgen/venv/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 144, in forward
return self.gather(outputs, self.output_device)
File "/home/enijkamp/enijkamp@g.ucla.edu/research_students/yu_wgen/venv/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 156, in gather
@enijkamp
enijkamp / rose_paired.py
Created January 31, 2019 07:23
rose paired
from itertools import cycle
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
import imageio
2019-01-22 21:26:43,521 : >> epoch 1210 : average_loss= 2.2262, average_accuracy=42.246%, mean_weight_std=0.000451, mean_normalized_std= 0.0224 mean_dist= 183.1
2019-01-22 21:26:43,523 : >> epoch 1210 : median_loss= 2.2259, median_accuracy=42.230%, median_weight_std=0.0003338, median_normalized_std= 0.0034 median_dist= 183.1
2019-01-22 21:26:43,523 : >> epoch 1210 : ensemble accuracy: 42.25%
@enijkamp
enijkamp / 59_5
Created January 21, 2019 10:27
59_5
This file has been truncated, but you can view the full file.
2019-01-20 23:27:25,717 : set device 1 out of 4 cuda devices
2019-01-20 23:27:25,717 : Namespace(checkpoint=None, data_path='./data', dataset='CIFAR10', device=1, e_increasing_layer_size=False, e_layer_size=200, e_number_of_hidden_layers=3, epochs=100000000000000000000, gamma=1.0, initial_weights=None, lamBda=0.0, lr_init=0.0001, model='LeNet', momentum=0.0, num_workers=4, resume_checkpoint=False, save_checkpoint=True, seed=2092, train_log_freq=1, w_batch_size=10, weight_sharing=False, wg_number_of_hidden_layers=2, with_adam=True, with_lr_plateau_schedule=False, with_norm=2, with_residual=False, x_batch_size=512, z_batch_size=10, z_dim=100, z_std=1.0)
@enijkamp
enijkamp / 55 56
Created January 20, 2019 10:25
55 56
2019-01-20 02:22:59,985 : >> epoch 20 : dist pair-wise (target)
2019-01-20 02:22:59,987 :
[[ 0. 11.072 10.757 11.233 11.483 10.696 11.791 11.471 12.791 11.896]
[11.072 0. 9.685 10.94 10.753 10.934 10.456 11.523 11.475 11.205]
[10.757 9.685 0. 10.439 10.51 11.268 10.206 10.785 11.371 10.588]
[11.233 10.94 10.439 0. 10.959 11.421 11.273 11.323 11.763 11.446]
[11.483 10.753 10.51 10.959 0. 11.945 10.611 11.584 10.717 10.703]
[10.696 10.934 11.268 11.421 11.945 0. 12.167 11.694 12.71 12.403]
[11.791 10.456 10.206 11.273 10.611 12.167 0. 11.947 10.735 10.685]
[11.471 11.523 10.785 11.323 11.584 11.694 11.947 0. 12.685 12.144]
@enijkamp
enijkamp / 51
Created January 20, 2019 09:58
51
2019-01-20 01:54:49,042 : epoch 210 , step 385 loss0= 0.0000 loss1= 29.9530 loss2= 0.0000 lr= 0.001000
2019-01-20 01:54:49,132 : epoch 210 , step 386 loss0= 0.0000 loss1= 30.0526 loss2= 0.0000 lr= 0.001000
2019-01-20 01:54:49,243 : epoch 210 , step 387 loss0= 0.0000 loss1= 30.1210 loss2= 0.0000 lr= 0.001000
2019-01-20 01:54:49,327 : epoch 210 , step 388 loss0= 0.0000 loss1= 30.0791 loss2= 0.0000 lr= 0.001000
2019-01-20 01:54:49,421 : epoch 210 , step 389 loss0= 0.0000 loss1= 29.9636 loss2= 0.0000 lr= 0.001000
2019-01-20 01:54:49,514 : epoch 210 , step 390 loss0= 0.0000 loss1= 29.8071 loss2= 0.0000 lr= 0.001000
2019-01-20 01:55:04,683 : epoch=210 n=10 acc=0.7752 (target)
2019-01-20 01:55:23,738 : >> epoch 210 : average_loss= 0.7859, average_accuracy=73.131%, mean_weight_std=0.09486, mean_normalized_std=11.0705 mean_dist= 36.55
2019-01-20 01:55:23,744 : >> epoch 210 : median_loss= 0.7838, median_accuracy=73.045%, median_weight_std
This file has been truncated, but you can view the full file.
loss1= 0.1201 lr= 0.000100
2019-01-14 07:50:29,196 : epoch 153 , step 277 : loss1= 0.1204 lr= 0.000100
2019-01-14 07:50:29,358 : epoch 153 , step 278 : loss1= 0.1205 lr= 0.000100
2019-01-14 07:50:29,607 : epoch 153 , step 279 : loss1= 0.1201 lr= 0.000100
2019-01-14 07:50:29,776 : epoch 153 , step 280 : loss1= 0.1208 lr= 0.000100
2019-01-14 07:50:29,898 : epoch 153 , step 281 : loss1= 0.1199 lr= 0.000100
2019-01-14 07:50:30,070 : epoch 153 , step 282 : loss1= 0.1207 lr= 0.000100
2019-01-14 07:50:30,184 : epoch 153 , step 283 : loss1= 0.1203 lr= 0.000100
2019-01-14 07:50:30,315 : epoch 153 , step 284 : loss1= 0.1203 lr= 0.000100
2019-01-14 07:50:30,460 : epoch 153 , step 285 : loss1= 0.1208 lr= 0.000100