Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
from PIL import Image
import numpy as np
import os
import struct
# (このファイルのpath)/imagesに画像化したMNISTを保存する
def load_mnist(path, kind='train'):
labels_path = os.path.join(path, '%s-labels-idx1-ubyte' % kind)
images_path = os.path.join(path, '%s-images-idx3-ubyte' % kind)
with open(labels_path, 'rb') as lbpath:
magic, n = struct.unpack('>II',
labels = np.fromfile(lbpath, dtype=np.uint8)
with open(images_path, 'rb') as imgpath:
magic, num, rows, cols = struct.unpack(">IIII",
images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784)
return images, labels
# バイナリファイルが置いてあるpath
X_train, y_train = load_mnist('/xxxxx/mnist', kind='train')
for (i, x) in enumerate(X_train):
image_mat = np.array([[x[i] for j in range(3)]+[0] for i in range(784)])
image = image_mat.reshape(28, 28, 4)
# images/images_{正解の数字(0-9)}_{1~60000の連番}.jpg
filename = 'images/image_' + str(y_train[i]) + '_' + str(i) + '.jpg'
pil_image = Image.fromarray(image.astype('uint8'))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.