Skip to content

Instantly share code, notes, and snippets.

François Chollet fchollet

Block or report user

Report or block fchollet

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@fchollet
fchollet / keras_intermediate.py
Created May 28, 2015
Defining a Theano function to output intermediate transformations in a Keras model
View keras_intermediate.py
import theano
from keras.models import Sequential
from keras.layers.core import Dense, Activation
X_train, y_train = ... # load some training data
X_batch = ... # a batch of test data
# this is your initial model
model = Sequential()
model.add(Dense(20, 64))
View functional_keras.py
'''Functional Keras is a more functional replacement for the Graph API.
'''
###################
# 2 LSTM branches #
###################
a = Input(input_shape=(10, 32)) # output is a TF/TH placeholder, augmented with Keras attributes
b = Input(input_shape=(10, 32))
encoded_a = LSTM(32)(a) # output is a TF/TH tensor
encoded_b = LSTM(32)(b)
View classifier_from_little_data_script_1.py
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
View classifier_from_little_data_script_2.py
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
@fchollet
fchollet / classifier_from_little_data_script_3.py
Last active Jul 17, 2019
Fine-tuning a Keras model. Updated to the Keras 2.0 API.
View classifier_from_little_data_script_3.py
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
View keras_logistic_regression.py
from keras.models import Sequential
from keras.layers import Dense
x, y = ...
x_val, y_val = ...
# 1-dimensional MSE linear regression in Keras
model = Sequential()
model.add(Dense(1, input_dim=x.shape[1]))
model.compile(optimizer='rmsprop', loss='mse')
View small_xception.py
"""Downsized version of Xception, without residual connections.
"""
from __future__ import print_function
from __future__ import absolute_import
from keras.models import Model
from keras.layers import Dense
from keras.layers import Input
from keras.layers import BatchNormalization
from keras.layers import Activation
@fchollet
fchollet / new_stacked_rnns.py
Last active Jul 14, 2019
New stacked RNNs in Keras
View new_stacked_rnns.py
import keras
import numpy as np
timesteps = 60
input_dim = 64
samples = 10000
batch_size = 128
output_dim = 64
# Test data.
@fchollet
fchollet / imperative_symbolic_blend.py
Created Oct 5, 2018
Blending Imperative and Symbolic differentiable programming
View imperative_symbolic_blend.py
############################################################################
# Case 1: inserting non-layer ops into a graph of layers
############################################################################
input_1 = tf.keras.Input(shape=(3,))
x = tf.keras.layers.Dense(4)(input_1)
output = tf.exp(x) # !!
model = tf.keras.Model(input_1, output)
############################################################################
View numpy_and_tf_at_the_same_time.py
from keras import backend
from keras.backend import numpy_backend
import numpy as np
import tensorflow as tf
class NPTF(object):
def __getattr__(self, name):
if name in dir(numpy_backend) and name in dir(backend):
You can’t perform that action at this time.