Skip to content

Instantly share code, notes, and snippets.

@fhennecker fhennecker/NeuroWednesday.ipynb Secret
Created Oct 12, 2016

Embed
What would you like to do?
{
"cells": [
{
"cell_type": "code",
"execution_count": 164,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sknn.mlp import Regressor, Classifier, Layer\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Classification"
]
},
{
"cell_type": "code",
"execution_count": 178,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# on génère 2 distributions gaussiennes, avec labels respectifs 0 et 1\n",
"nsamples = 100\n",
"X1 = np.random.randn(nsamples, 1)\n",
"X2 = 2*np.random.randn(nsamples, 1)+3\n",
"y1 = np.zeros((nsamples,1))\n",
"y2 = np.ones((nsamples,1))"
]
},
{
"cell_type": "code",
"execution_count": 179,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"([array([ 0., 3., 22., 45., 25., 5., 0., 0., 0., 0.]),\n",
" array([ 1., 1., 2., 10., 18., 18., 19., 13., 11., 7.])],\n",
" array([-4.40053734, -3.16480556, -1.92907377, -0.69334199, 0.54238979,\n",
" 1.77812157, 3.01385336, 4.24958514, 5.48531692, 6.7210487 ,\n",
" 7.95678049]),\n",
" <a list of 2 Lists of Patches objects>)"
]
},
"execution_count": 179,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFkCAYAAABW9YMrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHURJREFUeJzt3X2UZHV95/H3F1CGB23O2vK07EQIMo5HRbt9IgYwYtTg\nUaO4CSWzRji4wQWX03uMhhNZ3RgfQiLNQWETViOSwdogyionCC4Q2AUVIi2o0DMJMtI8OwXSsAzN\n43f/uDVMTzMzTN2q6uru3/t1Th2mfnXv7365Xd31qd/93XsjM5EkSWXZYdAFSJKk+WcAkCSpQAYA\nSZIKZACQJKlABgBJkgpkAJAkqUAGAEmSCmQAkCSpQAYASZIKZACQJKlAXQWAiDglIp6OiNNntV3V\nbtv4eCoizu6+VEmS1Cs71V0xIl4HfBi4ac5LCZwDnApEu21D3e1IkqTeqzUCEBG7A6uB44EHt7DI\nhsxcn5m/aj/+XzdFSpKk3qp7COAs4OLMvHIrrx8TEesj4mcR8bmI2KXmdiRJUh90fAggIo4GXg28\ndiuLnA/cDtwNvAo4DTgIeP9W+nsR8Hbgl8BMp/VIklSwZcBLgMsy8/5OVuwoAETEfsAZwO9m5hNb\nWiYzvzLr6c0RcS9weUTsn5nrtrDK26lCgyRJqucY4BudrNDpCMAo8GLghojYOMFvR+CwiDgJ2Dkz\nc84611FNBjwQ2FIA+CXA6tWrWblyZYflLD1jY2OMj48PuoyBW8z7YXJyklWrVgGfAfav0cM64FRW\nr17NOeecs2j3Q68t5vdEL7kfNnFfzP57U32WdqLTAHA58Mo5becCk8AXtvDhD/AaqjMD7tlKnzMA\nK1euZGRkpMNylp6hoSH3A0tlPxwJ1Pl/mABOZeXKlUtkP/SG+6LiftjEfbGZjg+hdxQAMvMR4JbZ\nbRHxCHB/Zk5GxAHAB4BLgPuBg4HTgasz8+edFidJkvqj9nUAZpn9rf9x4K3AycBuwB3AN4HP9mA7\nkiSpR7oOAJn5lln/vhN4c7d9SpKk/vJeAAtMo9EYdAkLgvuh4n7YxH1RcT9s4r7ojgFggfENXXE/\nVNwPm7gvKu6HTdwX3TEASJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVCADgCRJBTIASJJUIAOAJEkF\nMgBIklQgA4AkSQUyAEiSVCADgCRJBTIASJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVCADgCRJBTIA\nSJJUIAOAJEkFMgBIklSgrgJARJwSEU9HxOmz2naOiLMiohURD0fEhRGxZ/elSpKkXqkdACLidcCH\ngZvmvHQG8E7gKOAwYF/gW3W3I0mSeq9WAIiI3YHVwPHAg7PaXwgcB4xl5tWZ+RPgWOBNEfH6HtQr\nSZJ6oO4IwFnAxZl55Zz21wI7AVdsbMjMtcAUcEjNbUmSpB7bqdMVIuJo4NVUH/Zz7QU8npkPzWm/\nD9i78/IkSVI/dBQAImI/qmP8v5uZT3SyKpCdbEuSJPVPpyMAo8CLgRsiItptOwKHRcRJwDuAnSPi\nhXNGAfakGgXYqrGxMYaGhjZrazQaNBqNDkuUJGnpaTabNJvNzdqmp6dr99dpALgceOWctnOBSeAL\nwF3AE8ARwEUAEXEQsBz44bY6Hh8fZ2RkpMNyJEkqw5a+FE9MTDA6Olqrv44CQGY+Atwyuy0iHgHu\nz8zJ9vOvAqdHxK+Bh4EzgWsz8/paFUqSpJ7reBLgFsw9tj8GPAVcCOwMXAqc2IPtSJKkHuk6AGTm\nW+Y8fwz4aPshSZIWIO8FIElSgQwAkiQVyAAgSVKBDACSJBXIACBJUoEMAJIkFcgAIElSgQwAkiQV\nyAAgSVKBDACSJBXIACBJUoEMAJIkFcgAIElSgQwAkiQVyAAgSVKBDACSJBXIACBJUoEMAJIkFcgA\nIElSgQwAkiQVyAAgSVKBDACSJBXIACBJUoEMAJIkFaijABARJ0TETREx3X78ICLeMev1qyLi6VmP\npyLi7N6XLUmSurFTh8vfAXwCuLX9/EPAdyLi1Zk5CSRwDnAqEO1lNvSgTkmS1EMdBYDM/Mc5TZ+M\niI8AbwQm220bMnN9L4qTJEn9UXsOQETsEBFHA7sCP5j10jERsT4ifhYRn4uIXbquUpIk9VSnhwCI\niFcAPwSWAQ8D783Mte2XzwduB+4GXgWcBhwEvL8n1UqSpJ7oOAAAa4CDgT2Ao4DzIuKwzFyTmV+Z\ntdzNEXEvcHlE7J+Z67bV6djYGENDQ5u1NRoNGo1GjRIlSVpams0mzWZzs7bp6ena/XUcADLzSeC2\n9tOJiHg9cDLwkS0sfh3VZMADgW0GgPHxcUZGRjotR5KkImzpS/HExASjo6O1+uvFdQB2AHbeymuv\noToz4J4ebEeSJPVIRyMAEfFZ4HtUpwO+ADgGOBx4W0QcAHwAuAS4n+owwenA1Zn5814WLUmSutPp\nIYC9gPOAfYBp4KfA2zLzyojYD3gr1eGA3ahCwjeBz/auXEmS1AudXgfg+G28difw5m4LkiRJ/ee9\nACRJKpABQJKkAhkAJEkqkAFAkqQCGQAkSSqQAUCSpAIZACRJKpABQJKkAhkAJEkqkAFAkqQCGQAk\nSSqQAUCSpAIZACRJKpABQJKkAhkAJEkqkAFAkqQCGQAkSSqQAUCSpAIZACRJKpABQJKkAhkAJEkq\nkAFAkqQCGQAkSSpQRwEgIk6IiJsiYrr9+EFEvGPW6ztHxFkR0YqIhyPiwojYs/dlS5KkbnQ6AnAH\n8AlgtP24EvhORKxsv34G8E7gKOAwYF/gW70pVZIk9cpOnSycmf84p+mTEfER4I0RcRdwHHB0Zl4N\nEBHHApMR8frMvL4nFUuSpK7VngMQETtExNHArsAPqUYEdgKu2LhMZq4FpoBDuqxTkiT1UEcjAAAR\n8QqqD/xlwMPAezNzTUS8Bng8Mx+as8p9wN5dVypJknqm4wAArAEOBvagOtZ/XkQcto3lA8ga25Ek\nSX3ScQDIzCeB29pPJyLi9cDJwAXA8yPihXNGAfakGgXYprGxMYaGhjZrazQaNBqNTkuUJGnJaTab\nNJvNzdqmp6dr91dnBGCuHYCdgRuAJ4EjgIsAIuIgYDnVIYNtGh8fZ2RkpAflSJK09GzpS/HExASj\no6O1+usoAETEZ4HvUZ0O+ALgGOBw4G2Z+VBEfBU4PSJ+TTU/4EzgWs8AkCRpYel0BGAv4DxgH2Aa\n+CnVh/+V7dfHgKeAC6lGBS4FTuxNqZIkqVc6vQ7A8c/x+mPAR9sPSZK0QHkvAEmSCmQAkCSpQAYA\nSZIKZACQJKlABgBJkgpkAJAkqUAGAEmSCmQAkCSpQAYASZIKZACQJKlABgBJkgpkAJAkqUAGAEmS\nCmQAkCSpQAYASZIKZACQJKlABgBJkgpkAJAkqUAGAEmSCmQAkCSpQAYASZIKZACQJKlABgBJkgpk\nAJAkqUAdBYCIOCUiro+IhyLivoi4KCIOmrPMVRHx9KzHUxFxdm/LliRJ3eh0BOBQ4EvAG4C3As8D\nvh8Ru8xaJoFzgL2AvYF9gI93X6okSeqVnTpZODOPnP08Ij4E/AoYBa6Z9dKGzFzfdXWSJKkvup0D\nsAfVN/4H5rQfExHrI+JnEfG5OSMEkiRpwDoaAZgtIgI4A7gmM2+Z9dL5wO3A3cCrgNOAg4D3d1Gn\npB6bmpqi1WrVXn94eJjly5f3sCJJ86l2AADOBl4OvGl2Y2Z+ZdbTmyPiXuDyiNg/M9dtrbOxsTGG\nhoY2a2s0GjQajS5KlLQlU1NTrFixkpmZDbX7WLZsV9aunTQESPOk2WzSbDY3a5uenq7dX60AEBFf\nBo4EDs3Me55j8euAAA4EthoAxsfHGRkZqVOOpA61Wq32h/9qYGWNHiaZmVlFq9UyAEjzZEtfiicm\nJhgdHa3VX8cBoP3h/x7g8Myc2o5VXkM1T+C5goKkebcSMHhLJeooALTP528A7wYeiYi92i9NZ+ZM\nRBwAfAC4BLgfOBg4Hbg6M3/eu7IlSVI3Oh0BOIHq2/xVc9qPBc4DHqe6PsDJwG7AHcA3gc92VaUk\nSeqpTq8DsM3TBjPzTuDN3RQkSZL6z3sBSJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVCADgCRJBTIA\nSJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVCADgCRJBTIASJJUIAOAJEkF6uh2wNKgTU1N0Wq1uupj\neHiY5cuX96giSVqcDABaNKamplixYiUzMxu66mfZsl1Zu3bSECCpaAYALRqtVqv94b8aWFmzl0lm\nZlbRarUMAJKKZgDQIrQSGBl0EZK0qDkJUJKkAhkAJEkqkAFAkqQCGQAkSSqQAUCSpAJ1FAAi4pSI\nuD4iHoqI+yLioog4aM4yO0fEWRHRioiHI+LCiNizt2VLkqRudDoCcCjwJeANwFuB5wHfj4hdZi1z\nBvBO4CjgMGBf4FvdlypJknqlo+sAZOaRs59HxIeAXwGjwDUR8ULgOODozLy6vcyxwGREvD4zr+9J\n1ZIkqSvdzgHYA0jggfbzUapQccXGBTJzLTAFHNLltiRJUo/UDgAREVTD/ddk5i3t5r2BxzPzoTmL\n39d+TZIkLQDdXAr4bODlwG9vx7JBNVIgSZIWgFoBICK+DBwJHJqZd8966V7g+RHxwjmjAHtSjQJs\n1djYGENDQ5u1NRoNGo1GnRIlSVpSms0mzWZzs7bp6ena/XUcANof/u8BDs/MqTkv3wA8CRwBXNRe\n/iBgOfDDbfU7Pj7OyIg3eJEkaUu29KV4YmKC0dHRWv11FAAi4mygAbwbeCQi9mq/NJ2ZM5n5UER8\nFTg9In4NPAycCVzrGQCSJC0cnY4AnEB1LP+qOe3HAue1/z0GPAVcCOwMXAqcWL9ESZLUa51eB+A5\nzxrIzMeAj7YfkiRpAfJeAJIkFaib0wAlSV2ampqi1Wp11cfw8DDLly/vUUUqhQFAkgZkamqKFS9b\nwcyjM131s2yXZaxds9YQoI4YACRpQFqtVvXh/z5guG4nMPPtGVqtlgFAHTEASNKgDVPdN1WaR04C\nlCSpQAYASZIK5CEASbVNTk7WXnc+Zq53O8Pe2fVaygwAkmq4BwJWrVpVu4d+z1zvxQx7Z9drKTMA\nSKrhweqi4HVnr8/DzPWuZ9g7u15LnAFAUn2LYfb6YqhRGgAnAUqSVCADgCRJBTIASJJUIAOAJEkF\nMgBIklQgA4AkSQUyAEiSVCADgCRJBTIASJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVKCOA0BEHBoR\n342IuyLi6Yh495zXv9Zun/24pHclS5KkbtUZAdgNuBE4keqO4FvyPWAvYO/2o1GrOkmS1Bc7dbpC\nZl4KXAoQEbGVxR7LzPXdFCZJkvqnX3MA3hwR90XEmog4OyL+TZ+2I0mSauh4BGA7fA/4FrAO+E3g\n88AlEXFIZm7tkIEkSZpHPQ8AmXnBrKc3R8TPgF8Abwb+aWvrjY2NMTQ0tFlbo9Gg0XD6gCRJzWaT\nZrO5Wdv09HTt/voxArCZzFwXES3gQLYRAMbHxxkZGel3OZIkLUpb+lI8MTHB6Ohorf76fh2AiNgP\neBFwT7+3JUmStk/HIwARsRvVt/mNZwAcEBEHAw+0H5+imgNwb3u5vwT+BbisFwVLkqTu1TkE8Fqq\nofxsP77Ybv868J+AVwEfBPYA7qb64P+vmflE19VKkqSeqHMdgKvZ9qGDd9QvR5IkzQfvBSBJUoEM\nAJIkFcgAIElSgQwAkiQVyAAgSVKBDACSJBXIACBJUoH6fi8ASdLiNjU1RavV6qqP4eFhli9f3qOK\n1AsGAEnSVk1NTbHiZSuYeXSmq36W7bKMtWvWGgIWEAOAJGmrWq1W9eH/PmC4bicw8+0ZWq2WAWAB\nMQBIkp7bMLDvoItQLzkJUJKkAhkAJEkqkAFAkqQCGQAkSSqQAUCSpAIZACRJKpABQJKkAhkAJEkq\nkAFAkqQCGQAkSSqQlwKWJC163rGwcwYASdKi5h0L6+k4AETEocCfAKPAPsDvZ+Z35yzz58DxwB7A\ntcBHMvPW7suVJGlz3rGwnjojALsBNwJ/B3xr7osR8QngJOCPgHXAXwCXRcTKzHy8i1olSdo671jY\nkY4DQGZeClwKEBGxhUVOBj6TmRe3l/kgcB/w+8AF9UuVJEm90tOzACJif2Bv4IqNbZn5EHAdcEgv\ntyVJkurr9WmAewNJ9Y1/tvvar0mSpAVgvs4CCKpgIGk7TU5O1l63tNOZJHWu1wHgXqoP+73YfBRg\nT+An21pxbGyMoaGhzdoajQaNRqPHJUoL3T0QsGrVqto9lHY6k1SCZrNJs9ncrG16erp2fz0NAJm5\nLiLuBY4AfgoQES8E3gCcta11x8fHGRkZ6WU50iL1YDVeVveUpgJPZ5JKsKUvxRMTE4yOjtbqr851\nAHYDDqT6pg9wQEQcDDyQmXcAZwCfjIhbgV8CnwHuBL5Tq0KpVJ7SJKmP6owAvBb4J6rvKAl8sd3+\ndeC4zDwtInYF/pbqQkD/F/g9rwEgSdLCUec6AFfzHGcPZOangU/XK0mSJPWbdwOUJKlABgBJkgpk\nAJAkqUAGAEmSCmQAkCSpQAYASZIKZACQJKlABgBJkgpkAJAkqUAGAEmSCmQAkCSpQAYASZIKZACQ\nJKlABgBJkgrU8e2AJUlS56ampmi1Wl31MTw8zPLly3tSjwFAkqQ+m5qaYsXLVjDz6ExX/SzbZRlr\n16ztSQgwAEiS1GetVqv68H8fMFy3E5j59gytVssAIEnSojIM7DvoIipOApQkqUAGAEmSCmQAkCSp\nQAYASZIKZACQJKlABgBJkgrU8wAQEZ+KiKfnPG7p9XYkSVJ9/boOwM+BI4BoP3+yT9uRJEk19CsA\nPJmZ6/vUtyRJ6lK/5gC8NCLuiohfRMTqiPh3fdqOJEmqoR8jAD8CPgSsBfYBPg38n4h4RWY+0oft\nSVqiurl72uTkZI+rkZaWngeAzLxs1tOfR8T1wO3AHwBf29p6Y2NjDA0NbdbWaDRoNBq9LlHSIjA1\nNcWKFSuZmdkw6FKkheHW6j+zPy+np6drd9f3mwFl5nRE/Atw4LaWGx8fZ2RkpN/lSFokWq1W+8N/\nNbCyRg+XAKf2tihpkA4Ertz883JiYoLR0dFa3fU9AETE7sBvAuf1e1uSlqKVQJ0vBx4CkLalH9cB\n+KuIOCwifiMifgu4iOo0wGavtyVJkurpxwjAfsA3gBcB64FrgDdm5v192JYkSaqhH5MAnbUnSdIC\n570AJEkqkAFAkqQCGQAkSSqQAUCSpAIZACRJKpABQJKkAhkAJEkqUN8vBazFo5s7r200PDzM8uXL\ne1SRJKlfDAACenfntWXLdmXt2klDgCQtcAYAAb248xrAJDMzq2i1WgYASVrgDACao+6d1yRJi4mT\nACVJKpABQJKkAhkAJEkqkHMAVKTJycna63qqo6SlwACgwtwDAatWrardw7JdlrF2zVpDgKRFzQCg\nwjwICbwPGK6xegtmvj3jqY6SFj0DgMo0DOw76CIkaXCcBChJUoEMAJIkFchDAIvEo48+yl133dVV\nH3vvvTe77757jyqSJC1mBoBF4l3veRdX/O8ruurj4JGDufGGG3tU0dZ5ip0kLXwGgAWm2WzSaDSe\n1b5m7Rp4JfUv038z3Lr21q5qe269O8Xu2muv3eJ+KM7PqH7uApqA7wnfE5ts7e+ltk/fAkBEnAh8\nDNgbuAn4aGb+c7+2t1Rs8w09BOxfs+N76lbUid6dYucvdpt/7GcxAAC+J2bx70R3+hIAIuIPgS8C\n/xG4HhgDLouIgzKz1Y9tagHxFDtJWvD6dRbAGPC3mXleZq4BTgA2AMf1aXuSJKkDPQ8AEfE8YBR4\nZsZaZiZwOXBIr7cnSZI6149DAMPAjsB9c9rvA1ZsYfll0N3M8cXg9ttvZ/369du13DnnnPOs9g0b\nNsC9wI9rFnAHPPXUU0xMTGzx5U37/xKg7s/i2uo//wrUOdDz6021TE9PP6vWhVbj1nRf56waHwJ+\n2uHq813jvO3HO4HzO9hI/2sEWL9+Pa1WvSOb69atq/7RSY1z3xPbUee81zhXn2q88847Of/88xd0\njRv1q8ZZ/17WaXdRfTnvnYjYB7gLOCQzr5vVfhrw25n5W3OW/wCd/VZLkqTNHZOZ3+hkhX6MALSA\np4C95rTvybNHBQAuA44BfgnM9KEeSZKWqmXAS6g+SzvS8xEAgIj4EXBdZp7cfh7AFHBmZv5Vzzco\nSZI60q/rAJwOfD0ibmDTaYC7Auf2aXuSJKkDfQkAmXlBRAwDf051KOBG4O2Z+dyz4CRJUt/15RCA\nJEla2LwdsCRJBTIASJJUoAUXACLinRHxo4jYEBEPRMS3B13TIEXE8yPixoh4OiJeNeh65lNE/EZE\nfCUibmu/H/41Ij7dvtrkkhcRJ0bEuoh4tP078bpB1zTfIuKUiLg+Ih6KiPsi4qKIOGjQdQ1ae788\nHRGnD7qW+RYR+0bE30dEq/134aaIqHuf1EUrInaIiM/M+vt4a0R8spM+FtTtgCPiKOAc4E+BK4Hn\nAa8YaFGDdxrVJdBKvP/Xy4AAPgz8guq98BWqM0o+PsC6+s4baj3jUOBLVNfA3An4PPD9iFiZmY8O\ntLIBaQfBD1PdZbUoEbEH1SUerwDeTnXdmZfyzDXyivKnwB8DHwRuAV4LnBsRD2bml7engwUzCTAi\ndqS6GNCpmXnuYKtZGCLi94C/Bo6i+gG/OjM7vTDskhIRHwNOyMwDB11LP23lWhp3UF1L47SBFjdA\n7bOLfgUclpnXDLqe+RYRuwM3AB8BTgV+kpn/ZbBVzZ+I+ALVVWYPH3QtgxYRFwP3ZuaHZ7VdCGzI\nzA9uTx8L6RDACO2byEbERETcHRGXRMTLB1zXQETEXlSjIauAIr/pbMUewAODLqKfvKHWNu0BJEv8\nPbANZwEXZ+aVgy5kQN4F/DgiLmgfEpqIiOMHXdSA/AA4IiJeChARBwNvorp5xnZZSAHgAKrh3k9R\nXT/gnVTDOle3h31K8zXg7Mz8yaALWSgi4kDgJOBvBl1Ln23rhlp7z385C0N7FOQM4JrMvGXQ9cy3\niDgaeDVwyqBrGaADqEY/1gJvo/pbcGZErBpoVYPxBeAfgDUR8TjVyNAZmfk/t7eDvgeAiPh8e7LK\n1h5PtSf1bKzlLzLzf7U/+I6lSvv/vt91zoft3RcR8Z+BFwB/uXHVAZbdcx28J2av82+B7wH/kJl/\nN5jKBy6ofh9KdTbwcuDoQRcy3yJiP6rwsyoznxh0PQO0A3BDZp6amTdl5jnA/6AKBaX5Q+ADVL8P\nrwH+CPiTiPgP29vBfEwC/Guqb7Pbchvt4X9m3Zs0Mx+PiNuA5X2qbb5tz75YB/wO8EbgsepLzzN+\nHBHnZ+axfapvvmzvewKoZv1STQq9JjP/uJ+FLRCd3lBryYuILwNHAodm5j2DrmcARoEXAzfEpj8K\nOwKHRcRJwM65UCZ09dc9PPv+1ZPA+wZQy6CdBnwuM7/Zfn5zRLyEaoTo77eng74HgMy8H7j/uZZr\n3zfgMWAF1bGNjcdCXwLc3scS500H++KjwJ/NatqX6k5Pf0A1I3xR2979AM98878S+GfguH7WtVBk\n5hPt34cjgO/CM8PfRwBnDrK2QWh/+L8HODwzpwZdz4BczrPPBDqX6sPvC4V8+EN1BsCKOW0rWCKf\nER3alWePCD5NByP7C+Y0wMx8OCL+BvhvEXEn1Q/041T/g9/c5spLTGbeOft5RDxCNfx7W2bePZiq\n5l9E7ANcRXV2yMeBPTd++cnMpf5N2BtqARFxNtAA3g080p4cCzCdmcXcPjwzH6E6E+gZ7b8L92fm\n3G/ES9k4cG1EnAJcALwBOJ7qtMjSXAz8WUTcAdxMNZF+jOpU6e2yYAJA28eAJ4DzgF2A64C3ZOb0\nQKtaGEpJ+LO9jWrSzwFUp8DBpuPgOw6qqPngDbWecQLVz/uqOe3HUv2dKFlxfxMy88cR8V6qCXCn\nUh0yPbmTiW9LyEnAZ6jODNkTuBv47+227bJgrgMgSZLmz0I6DVCSJM0TA4AkSQUyAEiSVCADgCRJ\nBTIASJJUIAOAJEkFMgBIklQgA4AkSQUyAEiSVCADgCRJBTIASJJUoP8PtTjSyFVOEvUAAAAASUVO\nRK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10fce2518>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.hist((X1, X2))"
]
},
{
"cell_type": "code",
"execution_count": 180,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# on construit le dataset en incluant tous les exemples\n",
"Xt = np.vstack((X1,X2))\n",
"yt = np.vstack((y1,y2))"
]
},
{
"cell_type": "code",
"execution_count": 181,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# création de l'architecture\n",
"nn = Classifier(\n",
" layers=[\n",
" Layer(\"Sigmoid\", units=100),\n",
" Layer(\"Softmax\")],\n",
" learning_rate=0.001,\n",
" n_iter=25)"
]
},
{
"cell_type": "code",
"execution_count": 182,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# training\n",
"nn.fit(Xt, yt);"
]
},
{
"cell_type": "code",
"execution_count": 183,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(50, 2)]\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1113ba3c8>"
]
},
"execution_count": 183,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAFkCAYAAABxWwLDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHzJJREFUeJzt3X+cXXV95/HXJwkkoCU8YBpIqtFKIMRta52xCFvBVVyj\nYZe2uqtMzYLw0EVE9DGPbXVp9WGi/WFpJRSFLbT+AKLTIuAqjyJxBYsrimlnNNo6TAgi44+Q9RId\nMDD8CN/949zAZJxM7nfuPXPuvfN6Ph73kcz5nnPu5zs/7n3f7/mecyKlhCRJUo4FVRcgSZI6jwFC\nkiRlM0BIkqRsBghJkpTNACFJkrIZICRJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlKzVARMT7I+Kp\nKY/vTmpfHBFXREQtIh6OiBsiYlmZNUmSpObNxQjEvwLHAMfWHy+b1HYZcAbweuA0YAVw4xzUJEmS\nmrBoDp7jyZTST6YujIgjgPOAs1JKd9SXnQuMRMRJKaWtc1CbJEmahbkYgTg+In4UEfdGxOaIeG59\neR9FgLlt34oppVFgDDhlDuqSJEmzVPYIxF3Am4FRYDmwAfhKRPwaxeGMx1NKD03ZZle9bVoRcTSw\nFvg+MNHyiiVJ6l5LgOcDW1JKDzazo1IDREppy6Qv/zUitgL3A2/gwG/+AaQZdrsW+FRrKpQkaV56\nE/DpZnYwF3MgnpZSGo+I7cAq4EvAoRFxxJRRiGUUoxAH8n2AzZs3s2bNmtJqnSsDAwNs2rSp6jJa\nxv60r27qC9ifdtZNfYHu6s/IyAjr16+H+ntpM+Y0QETEs4HjgGuAIeBJ4HTgs/X2E4CVwNdn2M0E\nwJo1a+jt7S213rmwdOnSrujHPvanfXVTX8D+tLNu6gt0X3/qmp4CUGqAiIi/BG6mOGzxK8BGitDw\n9ymlhyLiY8ClEfFT4GHgcuBOz8CQJKm9lT0C8RyKYyxHAz8BvgqcPGnixgCwF7gBWAzcClxYck2S\nJKlJZU+i7D9I+2PARfWHJEnqEN4Lo2L9/TNmrI5jf9pXN/UF7E8766a+QPf1p1UipZnOmGw/EdEL\nDA0NDXXjpBZJkkozPDxMX18fQF9KabiZfTkCIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKS\nJGUzQEiSpGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKSJGVbuGHDhqpryLJx\n48blwPnnn38+y5cvr7ocaU5t376drVu3AnD00Ue3tL3Mfc/39naurdPbq66t0+zcuZOrr74a4OoN\nGzbsbGpnKaWOegC9QBoaGkrSfPHggw+mdWvXJuDpx7q1a9Pu3bubbi9z3/O9vZ1r6/T2qmvrVEND\nQ/v605uafT9udgdz/TBAaD5at3ZtOmrhwrQZ0hikzZCOWrgwrVu7tun2Mvc939vbubZOb6+6tk5l\ngDBAKMP999+fhoaGsh73339/1WU/bXR0NFF/AUuTHtfVPxVt2bKlqfYy9z3f29u5tk5vr/K5t2/f\nXvXLwqy1MkAsQupiY2NjrF69homJR7K2W7LkcEZHR1i5cmVJlTXu3nvvBeC0KctfXv/3rrvuaqq9\nzH3P9/Z2rq3T26t87h07dnD88ccz33kWhrparVarh4fNwFCDj81MTDxCrVarpugpjjvuOAC+MmX5\nHfV/Tz755Kbay9z3fG9v59o6vb3K5161ahWCOTv00KoHHsJQhmeG64bSlNHIGR7FNu30O7bveOx1\nFMdjr2P647WzaS9z3/O9vZ1r6/T2qmvrVM6BaLMXd7WvbgkQu3fvnnFGeDPtZe57vre3c22d3l51\nbZ2qlQEiUvGm3DEiohcYGhoaore3t+py1OaGh4fp6+ujODTR6O/LMNBHO/6O3XPPPezYsYNVq1ZN\newy2mfYy9z3f29u5tk5vr7q2TvPMayJ9KaXhZvZlgFBX67YAIUnNaGWAcBKlJEnKZoCQJEnZDBCS\nJCmbAUKSJGUzQEiSpGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKSJGUzQEiS\npGwGCEmSlM0AIUmSss1ZgIiIiyPiqYi4dNKyxRFxRUTUIuLhiLghIpbNVU2SJGl25iRARMRvAW8F\ntk1pugw4A3g9cBqwArhxLmqSJEmzV3qAiIhnA5uBtwA/m7T8COA8YCCldEdK6ZvAucBvR8RJZdcl\nSZJmby5GIK4Abk4p3T5l+UuARcBt+xaklEaBMeCUOahLkiTN0qIydx4RZwG/SREWpjoGeDyl9NCU\n5buAY8usS5IkNae0ABERz6GY4/AfU0pP5GwKpIOtNDAwwNKlS/db1t/fT39/f1adkiR1o8HBQQYH\nB/dbNj4+3rL9lzkC0Qf8MjAUEVFfthA4LSLeAbwGWBwRR0wZhVhGMQoxo02bNtHb29vqmiVJ6grT\nfageHh6mr6+vJfsvM0B8Cfj1Kcs+CYwAHwJ+BDwBnA58FiAiTgBWAl8vsS5JktSk0gJESmkP8N3J\nyyJiD/BgSmmk/vXHgEsj4qfAw8DlwJ0ppa1l1SVJkppX6iTKaUyd2zAA7AVuABYDtwIXznFNkiQp\n05wGiJTSK6d8/RhwUf0hSZI6hPfCkCRJ2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTNACFJkrIZICRJ\nUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTNACFJkrIZICRJUjYDhCRJymaAkCRJ\n2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTNACFJkrIZICRJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRl\nM0BIkqRsBghJkpTNACFJkrIZICRJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTN\nACFJkrIZICRJUjYDhCRJylZqgIiIt0XEtogYrz++FhGvmdS+OCKuiIhaRDwcETdExLIya5IkSc0r\newTiB8B7gL7643bgcxGxpt5+GXAG8HrgNGAFcGPJNUmSpCYtKnPnKaV/nLLovRFxAXByRPwIOA84\nK6V0B0BEnAuMRMRJKaWtZdYmSZJmb87mQETEgog4Czgc+DrFiMQi4LZ966SURoEx4JS5qkuSJOUr\ndQQCICJ+jSIwLAEeBn4vpXR3RLwYeDyl9NCUTXYBx5ZdlyRJmr3SAwRwN/Ai4EiKuQ7XRsRpM6wf\nQJqDuiRJ0iyVHiBSSk8C36t/ORwRJwHvAq4HDo2II6aMQiyjGIWY0cDAAEuXLt1vWX9/P/39/a0p\nXJKkDjY4OMjg4OB+y8bHx1u2/7kYgZhqAbAYGAKeBE4HPgsQEScAKykOecxo06ZN9Pb2llimJEmd\na7oP1cPDw/T19bVk/6UGiIj4U+ALFKdz/hLwJuDlwKtTSg9FxMeASyPipxTzIy4H7vQMDEmS2lvZ\nIxDHANcCy4Fx4NsU4eH2evsAsBe4gWJU4lbgwpJrkiRJTSr7OhBvOUj7Y8BF9YckSeoQ3gtDkiRl\nM0BIkqRsBghJkpTNACFJkrIZICRJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTN\nACFJkrIZICRJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlM0BIkqRsBghJkpTNACFJkrItqroAqduN\njY1Rq9Wytunp6WHlypUlVSRJzTNASCUaGxtj9eo1TEw8krXdkiWHMzo6YoiQ1LYMEFKJarVaPTxs\nBtY0uNUIExPrqdVqBghJbcsAIc2JNUBv1UVIUss4iVKSJGUzQEiSpGwGCEmSlM0AIUmSshkgJElS\nNgOEJEnKZoCQJEnZDBCSJCmbAUKSJGUzQEiSpGwGCEmSlM17Yah03s5akrqPAUKl8nbWktSdDBAq\nlbezlqTuZIDQHPF21pLUTZxEKUmSshkgJElStlIDRERcHBFbI+KhiNgVEZ+NiBOmrLM4Iq6IiFpE\nPBwRN0TEsjLrkiRJzSl7BOJU4CPAS4FXAYcAX4yIwyatcxlwBvB64DRgBXBjyXVJkqQmlDqJMqW0\nbvLXEfFm4P8BfcBXI+II4DzgrJTSHfV1zgVGIuKklNLWMuuTJEmzM9dzII4EErC7/nUfRYi5bd8K\nKaVRYAw4ZY5rkyRJDZqzABERQXG44qsppe/WFx8LPJ5SemjK6rvqbZIkqQ3N5XUgrgReCLysgXWD\nYqTigAYGBli6dOl+y/r7++nv7591gZIkdYvBwUEGBwf3WzY+Pt6y/c9JgIiIjwLrgFNTSj+e1PQA\ncGhEHDFlFGIZxSjEAW3atIneXi9MJEnSdKb7UD08PExfX19L9l/6IYx6ePgd4BUppbEpzUPAk8Dp\nk9Y/AVgJfL3s2iRJ0uyUOgIREVcC/cCZwJ6IOKbeNJ5SmkgpPRQRHwMujYifAg8DlwN3egaGJEnt\nq+xDGG+jmMvwT1OWnwtcW///ALAXuAFYDNwKXFhyXZIkqQllXwfioIdIUkqPARfVH5LE2NgYtVqt\n4fV7enq8c6s0x7wbp6S2MjY2xuoTVzPx6ETD2yw5bAmjd48aIqQ5ZICQ1FZqtVoRHl4H9DSyAUzc\nNEGtVjNASHPIACGpPfVQ3BlHUlvydt6SJCmbIxBSmxoZGclav5UTCZ3EKOlgDBBS29kJAevXr8/a\nqlUTCZ3EKKkRBgip7fysuHpKo5MIoaUTCZ3EKKkRBgipXVU9ibDq55fU1pxEKUmSshkgJElSNgOE\nJEnKZoCQJEnZDBCSJCmbAUKSJGUzQEiSpGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCS\nJCmbAUKSJGUzQEiSpGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKSJGVbVHUB\nktRuxsbGqNVqDa/f09PDypUrS6xIaj8GCEmaZGxsjNUnrmbi0YmGt1ly2BJG7x41RGheMUBI0iS1\nWq0ID68DehrZACZumqBWqxkgNK8YICRpOj3AiqqLkNqXkyglSVI2A4QkScpmgJAkSdkMEJIkKZsB\nQpIkZTNASJKkbJ7GKUltJPcqmOCVMFWNUgNERJwK/CHQBywHfjel9Pkp63wAeAtwJHAncEFKaUeZ\ndUlSO5rNVTDBK2GqGmWPQDwL+BbwceDGqY0R8R7gHcA5wH3AnwBbImJNSunxkmuTpLaSfRVM8EqY\nqkypASKldCtwK0BExDSrvAv4YErp5vo6ZwO7gN8Fri+zNklqW14FUx2gskmUEfGrwLHAbfuWpZQe\nAr4BnFJVXZIk6eCqnER5LJAoRhwm21Vvkyo1MjKStb4T2STNJ+14FkZQBIsZDQwMsHTp0v2W9ff3\n09/fX1Zdmjd2QsD69euztnIim6R2Mjg4yODg4H7LxsfHW7b/KgPEAxRh4Rj2H4VYBnzzYBtv2rSJ\n3t7ekkrT/PazIsI6kU1SB5vuQ/Xw8DB9fX0t2X9lASKldF9EPACcDnwbICKOAF4KXFFVXdLTnMgm\nSQdU9nUgngWsohhpAHhBRLwI2J1S+gFwGfDeiNgBfB/4IPBD4HNl1iVJkppT9gjES4AvUwwIJ+DD\n9eXXAOellC6JiMOBqyguJPV/gdd6DQhJktpb2deBuIODnCqaUtoAbCizDkmS1FreTEuSJGUzQEiS\npGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKSJGVrx9t5S5IqMjY2Rq1Wy9qm\np6fHu9DOQwYISRJQhIfVJ65m4tGJrO2WHLaE0btHDRHzjAFCkgRArVYrwsPrKG5n39BGMHHTBLVa\nzQAxzxggJEn76wFWVF2E2p2TKCVJUjYDhCRJymaAkCRJ2QwQkiQpmwFCkiRlM0BIkqRsnsYpdbnc\nKwuOjIyUWI2kbmGAkLrY2NgYq1evYWLikapLkdRlDBBSF6vVavXwsBlY0+BWtwDvK68oSV3BACHN\nC2uA3gbX9RCGpINzEqUkScpmgJAkSdkMEJIkKZsBQpIkZTNASJKkbAYISZKUzdM454HcKxEC9PT0\nsHLlypIqkiR1OgNEl5vtlQiXLDmc0dERQ4QkaVoGiC43uysRjjAxsZ5arWaAkCRNywAxb+RciVCS\npJk5iVKSJGVzBEJtK/e20k78lKS5Y4BQG9oJAevXr8/aaslhSxi9e9QQIUlzwAChNvQzSMDrgJ4G\nN6nBxE0TTvyUpDligFD76gFWVF2EJGk6TqKUJEnZHIFoUz/5yU+y1l+wYAFHH310SdVIkrS/tggQ\nEXEh8AfAscA24KKU0j9XW1V1PvKRj/DOd74ze7trrrmGs88+u2V1eBaEJOlAKg8QEfFG4MPAfwe2\nAgPAlog4IaWUdwOHLrFt2zYW9ixk76v2NrzNwi8sZNu2bS2qwLMgJEkzqzxAUASGq1JK1wJExNuA\nM4DzgEuqLKxKcXjAiY2vv+DLrZzO4lkQkqSZVRogIuIQoA/4s33LUkopIr4EnFJZYSp4FoQk6QCq\nPgujB1gI7JqyfBfFfAhJktSG2uEQxnSCYhC9K5xzzjnccsstDa//85//nL2P72XRXzX+43lizxMc\neuihM6yRMyHyvuKfnBkoB13X5+/a5z/Iejt37mTnzp0NP/vTk3fn4fNnP3cHPL+6V9UBogbsBY6Z\nsnwZvzgqsZ+BgQGWLl2637L+/n76+/tbWmArnHnmmZx4YuMTGvbs2cMhhxxykECwvwULFnDBBRf8\nwvKenh6WLDmciYm8CZEEcFPeJksOW0JPz/6TJnz++fH80z33PldddRUbN27MevpFhyziyZuenJfP\nn/vc7f78qs7g4CCDg4P7LRsfH2/Z/iOlaj/oR8RdwDdSSu+qfx3AGHB5Sukvp1m/FxgaGhqit9fb\nUzdibGyMWi3vY8Jjjz3G4sWLs7Y50GmcPn/3P/9Mp/DmjgAA7N27l4ULF87L58997nZ/frWX4eFh\n+vr6APpSSsPN7KsdAsQbgGuA83nmNM7/ApyYUvqFqykZICRJmp1WBoiqD2GQUro+InqAD1AcyvgW\nsHa68CBJktpD5QECIKV0JXBl1XVIkqTGVH0apyRJ6kAGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQ\nJEnZDBCSJCmbAUKSJGUzQEiSpGwGCEmSlM0AIUmSshkgJElSNgOEJEnKZoCQJEnZDBCSJCmbAUKS\nJGUzQEiSpGwLN2zYUHUNWTZu3LgcOP/8889n+fLlpT3P9u3b2bp1KwBHH310Vnsz29ru93amdklq\nxs6dO7n66qsBrt6wYcPOpnaWUuqoB9ALpKGhoVSGBx98MK1buzYBTz/WrV2bdu/efdD2Zra13e/t\nTO2S1ApDQ0P7XmN6U7Pvx83uYK4fZQeIdWvXpqMWLkybIY1B2gzpqIUL07q1aw/a3sy2tvu9nald\nklrBAFFSgBgdHU3UX7zTpMd19U+EW7ZsmbG9mW1t93t7oPbt27e3/Hdd0vzUygDhJMpJ7r33XgBO\nm7L85fV/77rrrhnbm9nWdr+3B2rfsWMHktRuDBCTHHfccQB8ZcryO+r/nnzyyTO2N7Ot7X5vD9S+\natUqJKntNDuEMdcP5mgOxHUUx6KvY/pj1dO1N7Ot7X5vZ2qXpFZwDkSJAWL37t0zzoafqb2ZbW33\ne+tZGJLK1soAEal4U+4YEdELDA0NDdHb21va89xzzz3s2LGDVatWcfzxx2e1N7Ot7X5vZ2qXpGYM\nDw/T19cH0JdSGm5mXwYISZLmiVYGCCdRSpKkbAYISZKUzQAhSZKyGSAkSVI2A4QkScpmgJAkSdkM\nEJIkKZsBQpIkZTNASJKkbAYISZKUzQAhSZKyGSAkSVI2A4QkScpmgKjY4OBg1SW0lP1pX93UF7A/\n7ayb+gLd159WKS1ARMQfRcSdEbEnInYfYJ3nRsQ/1td5ICIuiYh5FWq67RfT/rSvbuoL2J921k19\nge7rT6uU+WZ9CHA98L+ma6wHhVuARcDJwDnAm4EPlFiTJElqgdICREppY0rpr4HvHGCVtcCJwJtS\nSt9JKW0B3gdcGBGLyqpLkiQ1r8rDBScD30kp1SYt2wIsBf5dNSVJkqRGVPlJ/1hg15Rluya1bTvA\ndksARkZGSiprbo2PjzM8PFx1GS1jf9pXN/UF7E8766a+QHf1Z9J755Jm9xUppcZXjvhz4D0zrJKA\nNSml7ZO2OQfYlFI6asq+rgJWppReO2nZYcAe4DUppS8eoIbfBz7VcNGSJGmqN6WUPt3MDnJHIP4K\n+MRB1vleg/t6APitKcuOqf87dWRisi3Am4DvAxMNPpckSSpGHp5P8V7alKwAkVJ6EHiw2Set+zrw\nRxHRM2kexKuBceC7B6mhqdQkSdI89rVW7KS0ORAR8VzgKOB5wMKIeFG9aUdKaQ/wRYqgcF1EvAdY\nDnwQ+GhK6Ymy6pIkSc3LmgORteOITwBnT9P0ipTSV+rrPJfiOhH/gWLuwyeBi1NKT5VSlCRJaonS\nAoQkSepe8+qy0ZIkqTUMEJIkKVvHB4iIOCMi7oqIRyJid0TcVHVNzYqIQyPiWxHxVET8RtX15IqI\n50XE30XE9+o/l3siYkNEHFJ1bY2KiAsj4r6IeLT++zX1lOOOEBEXR8TWiHgoInZFxGcj4oSq62qF\net+eiohLq65ltiJiRURcFxG1+t/Ktojorbqu2YiIBRHxwUl/9zsi4r1V19WoiDg1Ij4fET+q/16d\nOc06H4iIH9f7938iYlUVtTZipv5ExKKI+IuI+HZE/Ly+zjURsTznOTo6QETE64FrgY8Bvw78e7rj\nFM9LgB9SXJirE50IBPBW4IXAAPA24E+rLKpREfFG4MPA+4EXU1wVdUtE9FRa2OycCnwEeCnwKoqb\n3H2xftG2jlUPdG/lwFesbXsRcSRwJ/AYxb2B1gD/A/hplXU14X8C5wNvp3gNeDfw7oh4R6VVNe5Z\nwLeAC5nmtbd+tuA7KPp4EsXE/y0RcehcFplhpv4cDvwmsJHiNe73gNXA57KeIaXUkQ9gIfAD4M1V\n19Lifr0W+DeKP8CngN+ouqYW9esPKE7hrbyWBmq9C/jrSV8HRaB7d9W1taBvPfXfq5dVXUsTfXg2\nMAq8EvgycGnVNc2yHx8C7qi6jhb252bgb6csuwG4turaZtGXp4Azpyz7MTAw6esjgEeBN1Rd72z6\nM806LwH2As9pdL+dPALRC6wAiIjh+rDSLRHxworrmrWIOAa4GlhP8YvZTY4EdlddxMHUD7P0Abft\nW5aKv64vAadUVVcLHUnxaaTtfxYzuAK4OaV0e9WFNOk/A/8SEdfXDy8NR8Rbqi6qCV8DTo+I4wHq\n1/75beCWSqtqgYj4VYp7NE1+XXgI+Abd8boAz7w2/KzRDTo5QLyA4pPh+4EPAGdQDP3dUR8a7ESf\nAK5MKX2z6kJaqX6c8B3A31RdSwN6KEa3prvR27FzX07rREQAlwFfTSkd8Gqv7SwizqIYer246lpa\n4AXABRSjKa+m+Pu4PCLWV1rV7H0I+Afg7oh4HBgCLksp/X21ZbXEsRRvrl33ugAQEYspfn6fTin9\nvNHt2i5ARMSf1yd8HOixtz4JbF/tf5JS+t/1N91zKX7I/7WyDkzRaH8i4p3ALwF/sW/TCsueVsbP\nZvI2vwJ8AfiHlNLHq6m8JYLOnZOyz5UUc1LOqrqQ2YiI51AEoPWpO65WuwAYSim9L6W0LaV0NfC3\nFKGiE70R+H2K368XA+cAfxgR/63SqsrV8a8LEbEI+AxFP96es22Vt/M+kEZv2LWi/v+n702aUno8\nIr4HrCypttlopD/3Aa8ATgYeKz4oPu1fIuJTKaVzS6ovR9bN1CJiBXA7xSfe88ssrIVqFMcBj5my\nfBkz3+StrUXER4F1wKkppZ1V1zNLfcAvA0PxzB/JQuC0+kS9xfXDTZ1iJ5Nev+pGgNdVUEsrXAL8\nWUrpM/Wv/y0ink8xWnRdVUW1yAMUYeEY9n8dWAZ07IjxpPDwXOCVOaMP0IYBIjV4w66IGKKYvbya\n+o1B6sevnw/cX2KJWTL6cxHwx5MWraC4W9obgK3lVJen0b7A0yMPtwP/DJxXZl2tlFJ6ov67dTrw\neXh66P904PIqa5utenj4HeDlKaWxqutpwpcozraa7JMUb7of6rDwAMUZGKunLFtNG71+ZTqcX/w0\n/hRtONKdK6V0X0Q8QPE68G2AiDiC4uymK6qsbbYmhYcXUNxiIvvsn7YLEI1KKT0cEX8DbIyIH1L8\n0b2b4hf4MzNu3IZSSj+c/HVE7KFIvN9LKf24mqpmp34u8T9R3HL93cCyfR8YU0qd8Cn+UuCaepDY\nSnEa6uEUb1YdJSKuBPqBM4E99Ym6AOMppYnqKsuXipvw7Td3o/538mBKaeon+U6wCbgzIi4Grqd4\nM3oLxempnehm4I8j4gcUZ5L1Uvzt/F2lVTUoIp4FrOKZw8cvqE8E3Z1S+gHF4bP3RsQOite2D1Kc\nnZV36uMcmak/FGeU3Egxn+g/AYdMem3Y3fAhwqpPL2ny1JSFFMNmOylmjm4B1lRdV4v69jyKofSO\nO42T4tjn3imPp4C9VdeW0Ye3U7xIPEpx6/mXVF3TLPvx1DQ/i73A2VXX1qL+3U6HnsZZr38dxSfa\nRyjedM+ruqYm+vIsivB9H8U1Eu6huM7Aoqpra7D+lx/g7+Xjk9bZUH/zfaT+frOq6rpn05/6+8vU\ntn1fn9boc3gzLUmSlK3jj01JkqS5Z4CQJEnZDBCSJCmbAUKSJGUzQEiSpGwGCEmSlM0AIUmSshkg\nJElSNgOEJEnKZoCQJEnZDBCSJCnb/wcEVNsJTcLiFwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x111210d68>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# on feed des données jamais vues au \n",
"ntest = 50\n",
"Xtest = np.linspace(-5, 10, num=ntest).reshape((ntest,1))\n",
"ytest = nn.predict(Xtest)\n",
"\n",
"result = np.hstack((Xtest, ytest))\n",
"\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"ax.hist((X1, X2))\n",
"ax.scatter(Xtest, np.multiply(50*np.ones((ntest,1)),ytest)-5, c='r')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Régression"
]
},
{
"cell_type": "code",
"execution_count": 184,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x111520588>"
]
},
"execution_count": 184,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAFkCAYAAABxWwLDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X2UpVdd4PvvLwWCMJemEyaJjEEl/XKjMwLVCJ0x6Uap\nWJ3KFaPeteCku0VdOsPw0rl9L8LgywJEBwQhvMm9cxERUnLujbAYw6TSBSVDmhdjsAoQNeRUd4Id\nxUTo6tsICEJl3z+eU+mq6no5p87zds75ftY6K13PefqpfZ6u1P49e//2b0dKCUmSpG5cUHUDJElS\n/zGAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXTOAkCRJXSs0\ngIiIF0TE5yLibPv1qYg4sOz9R0XE70XEVyLinyLi/RFxcZFtkiRJvSt6BOJ+4OXAnvbro8CfRMQV\n7fffDFwH/CywD3gi8IGC2yRJknoUZW+mFRGngZeSBQpfBp6XUvpg+73dwN3A3pTSXaU2TJIkday0\nHIiIuCAingc8BvgzshGJRwB/unROSuke4BRwZVntkiRJ3XtE0d8gIv4tWcDwaOCfgJ9OKX0hIp4G\n/EtK6aur/sqDwKUbXO8iYBz4IvDNQhotSdJgejTw/cB0Sul0LxcqPIAAvgA8BXg8Wa7DeyNi3wbn\nB7DRvMo48Ef5NU+SpKFzEHhfLxcoPIBIKX0HuLf95VxEPAO4EbgF+K6IeNyqUYiLyUYh1vNFgMnJ\nSa644ooNTht8R48e5aabbqq6GbXgvch4H87xXmS8DxnvQ+buu+/m0KFD0O5Le1HGCMRqFwCPAmaB\n7wDPBpaSKHcBTyKb8ljPNwGuuOIKRkdHi21pzW3btm3o78ES70XG+3CO9yLjfch4H87TcwpAoQFE\nRPw2cDvZcs7/iWzIZD/wEymlr0bEu4A3RcQZsvyItwKfdAWGJEn1VvQIxCXAe4HvAc4Cf0kWPHy0\n/f5RYBF4P9moxDHgRQW3SZIk9ajQACKl9EubvP8t4CXtlyRJ6hPuhdHHGo1G1U2oDe9Fxvtwjvci\n433IeB/yV3olyl5FxCgwOzs7a0KMJEldmJubY8+ePQB7UkpzvVzLEQhJktQ1AwhJktQ1AwhJktQ1\nAwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJ\nktQ1AwhJktQ1AwhJktQ1AwhJktS1R1TdAEmS8tBqtTh58iQ7duxg586dVTdn4DkCIUnqawsLCxw4\ncB27d+9mYmKCXbt2ceDAdZw5c6bqpg00AwhJUl+74YbDzMzcCUwCp4BJZmbupNE4VHHLBptTGJKk\nvtVqtZieniILHg62jx5kcTExPX2Y+fl5pzMK4giEJKlvnTx5sv2nfave2Q/AiRMnSm3PMDGAkCT1\nrcsvv7z9p+Or3rkDgB07dpTanmFiACFJ6lu7du1ifHyCkZEjZNMY9wOTjIzcyPj4hNMXBTKAkCT1\ntWZzkrGxvcBh4EnAYcbG9tJsTlbcssFmEqUkqa9t376dY8duY35+nhMnTlgHoiQGEJKkWtlqQaid\nO3caOJSo0CmMiHhFRNwVEV+NiAcj4oMRsWvVOR+LiIeWvRYj4h1FtkuSVD8WhOovRedAXA28DXgm\nMAY8EvhwRHz3snMS8H8DlwCXAt8DvKzgdkmSasaCUP2l0CmMlNLE8q8j4ueBfwT2AJ9Y9tY3Ukpf\nLrItkqT6siBU/yl7FcbjyUYcFlYdPxgRX46Iz0fEf1k1QiFJGnAWhOo/pSVRRkQAbwY+kVL6m2Vv\n/RHwt8CXgB8GXg/sAv7XstomSarWyoJQB5e9Y0GouipzFcY7gB8EfnT5wZTS7y/78q8j4gFgJiJ+\nIKV033oXO3r0KNu2bVtxrNFo0Gg0cmyyJKkMSwWhZmaOsLiYyEYe7mBk5EbGxiwItRXNZpNms7ni\n2NmzZ3O7fqSUcrvYut8k4u3ATwJXp5RObXLuY4CvAeMppY+s8f4oMDs7O8vo6Ggh7ZUkle/MmTM0\nGofauRCZ8fEJms1Jtm/fXmHLBsfc3Bx79uwB2JNSmuvlWoWPQLSDh58C9m8WPLQ9jSxP4h8KbZgk\nqVYsCNVfCg0g2vUcGsBzgK9HxCXtt86mlL4ZEU8GbgCmgNPAU4A3AXeklP6qyLZJkurJglD9oegR\niBeQjSZ8bNXxXwDeC/wLWX2IG4HHku2C8sfAbxfcLkmS1IOi60BsuEw0pfR3wLOKbIMkScqfu3FK\nkqSuGUBIkqSuGUBIkqSuGUBIkqSuGUBIkqSuGUBIkqSulbkXhiRpyLRaLU6ePGlVyQHkCIQkKXcL\nCwscOHAdu3fvZmJigl27dnHgwHWcOXOm6qYpJwYQkqTc3XDDYWZm7gQmgVPAJDMzd9JoHKq4ZcqL\nUxiSpFy1Wq32jpqTwMH20YMsLiampw8zPz/vdMYAcARCkpSrkydPtv+0b9U7+wE4ceJEqe1RMQwg\nJEm5uvzyy9t/Or7qnTsA2LFjR6ntUTEMICRJudq1axfj4xOMjBwhm8a4H5hkZORGxscnnL4YEAYQ\nkqTcNZuTjI3tBQ4DTwIOMza2l2ZzsuKWKS8mUUrSECuqTsP27ds5duw25ufnOXHihHUgBpABhCQN\noYWFBW644XB7tURmfHyCZnOS7du35/Z9du7caeAwoJzCkKQhZJ0G9coRCEkaMtZpUB4cgZCkIWOd\nBuXBAEKShox1GpQHAwhJGjLWaVAeDCAkaQhZp0G9MolSkoaQdRrUKwMISRpi1mnQVjmFIUmSumYA\nIUmSumYAIUmSulZoABERr4iIuyLiqxHxYER8MCJ2rTrnURHxexHxlYj4p4h4f0RcXGS7JElSb4oe\ngbgaeBvwTGAMeCTw4Yj47mXnvBm4DvhZsrJoTwQ+UHC7JEkDrNVqcfvttzM/P191UwZWoaswUkoT\ny7+OiJ8H/hHYA3wiIh4H/CLwvJTSHe1zfgG4OyKekVK6q8j2SVLRitouW2sra5dRlZ8D8XggAQvt\nr/eQBTF/unRCSukesq3hriy5bZKUm4WFBQ4cuI7du3czMTHBrl27OHDgOs6cOVN10waau4yWp7QA\nIiKCbLriEymlv2kfvhT4l5TSV1ed/mD7PUnqS3XuyPpteL/T9i7tMrq4+FayXUYvI9tl9C1MT0/1\nzeftF2WOQLwD+EGg0cG5QTZSIUl9p64dWb+NinTbXncZLVcplSgj4u3ABHB1SulLy956APiuiHjc\nqlGIi8lGIdZ19OhRtm3btuJYo9Gg0egkPpGk4nTSkVWRD7FyVGQfcJyZmSM0Goc4duy20tuzmW7b\nu3KX0YPL3hnOXUabzSbNZnPFsbNnz+b3DVJKhb6At5Nt9fbkNd57HPAt4KeXHdsFPAQ8Y53rjQJp\ndnY2SVId3XPPPQlIMJkgLXvdnIDUarVs0ya22t7x8Yk0MnJh+7xTCW5OIyMXpvHxiZI/QT3Nzs62\n7yujqcf+veg6EO8gCwNvAL4eEZe0X49uBy9fBd4FvCkinhURe4B3A59MrsCQ1KfquF12vw3vb7W9\n7jJanqKnMF5AFul8bNXxXwDe2/7zUWAReD/wKOAY8KKC2yVJhWo2J2k0DjE9ffjhY2NjE5V1ZP02\nvL/V9rrLaHmKrgOx6QhHSulbwEvaL0kaCHXryJZGRWZmjrC4mMie5O9gZORGxsaqGRXZSK/tdZfR\n4rkXhiQVaOfOnVx77bW16Mz6bXi/39o7bEpZhSFJql7dRkU202/tHTYGEJI0BFaX1K5DR9xpme+6\ntFcrOYUhSQOsjsWj6tgmdc8AQpIG0FL55+uv/5naldReq8z3Rz7yScbGfsJy033EKQxJGiBr7UaZ\nddRLSyEPsriYmJ4+zPz8fOlTA0tlvs+1aQF4Hw89dJa5ub94ePWFu2fWnyMQkjRAVj7dv6d9tD7F\no84vEHUYqNcIiTpjACFJA+L8Tbz2tt85vurM6opHrSwQ1QKmgHptOqbOGEBI0oA4/+l+F9k+hvUp\nqb2yzPc7V7V3ST3La2slAwhJGhArn+6XTLJUhKkuxZjOFYj63faR+oyQqHMGEJK0BUurHOo0zL72\nJl63MTJyiquu2s/U1BStVotjx26rNEFxqUBUq9VidPRHarXpmDpnACFJXah7DYP1yj/feusHeyqp\n3WnA1E1gtXPnTmZmpi1X3adcxilJXVi5ymEfcJyZmSM0Goc4duy2iluXf/nntZaFrrXMstPzim6v\nyhMpparb0JWIGAVmZ2dnGR0drbo5koZIq9Vi9+7drKyrQPvrw7RarYHr/A4cuI6ZmTvbKzuygGlk\n5AhjY3tXBEydnqdqzc3NsWfPHoA9KaW5Xq7lFIYkdej8VQ5LBnPVwPnLQtdeZtnpeRosBhCS1KG1\nVznAoK4a6DRgGrbAShkDCEnq0NqrHAZ31UCnAdOwBVbKGEBIUhfWW+VQ1aqBIpeTdhowDVtgpYwB\nhKSh00unu7yGQZV1FcpaTtppwFS3wErFcxWGpKGx1aWGdVT2qodOl1m6HLPe8lyFYQAhaWgMylLD\nYVxOupZWq8XJkycNVrrgMk5JA6fo0tCDtNRw2Fc9dDt9U8ey44PAAEJSpcqayx+kTnfYVz2srAZ6\nCphkZuZOGo1DK86re9nxfmcAIalSnXYGvRqkTneYVz10M5JU1s/WsDKAkFSZMqcV6tDp5jmU3o+r\nHvL4/J2OJA3SlFVdGUBIqkzZ0wpVdbpFDKXXZTlpJ/L8/J2OJA3SlFVdGUBIqkze0wqbPeFW1ekW\nOZS+c+fOnrbpXq2IhMM8P3+nI0mDNGVVWymlvnoBo0CanZ1NkvrPPffck6amplKr1UoppTQ+PpFG\nRi5McHOCUwluTiMjF6bx8YmOr3n69Ok0Pj6RgIdf4+MTaWFhoaiP0bF77rmn3abJBGnZ6+YEPHwf\nqlbUPSzi8y8sLHTU1jx+tgbN7Ozs0j0bTb32x71eYMOLw9XArcDfAw8Bz1n1/rvbx5e/pja5pgGE\n1IfW66Duvffenjuucx3FZLujmKxNRzE1NdX+XKdWdaCnEpCmpqaqbmJKqbh7WOTnb7VaK4LR1ToN\nNIZJPwUQB4DfBK4HFtcJIG4D/jVwcfu1bZNrGkBIfWizDmqzzmA9dX/Cr3v7im5jHT7/Vn+2BlGe\nAcQjtjjz0ZGU0jHgGEBExDqnfSul9OUi2yGpWksZ8SsrJx5kcTExPX2Y+fl5du7cuaV5/E6S5apc\n1rg0Zz8zc4TFxdRu1x2MjNzI2Fg9llwWeQ/r8Pm3+rOljdUhifJZEfFgRHwhIt4RERdW3SBJ+Soy\nI74fkuXqvuSy6HtY98+vrSl0BKIDtwMfAO4DLgdeC0xFxJUppf7apEPSulZ2UMv3bui9g8rjCbfo\nPRWWVn/UdaOpokcJ6v75tUW9zoF0+mKNJMo1zvmB9nk/tsE55kBIfajIjPitJsvVefVG2Uw4HA55\n5kCUthtnRDwEXJ9SunWT8/4R+LWU0jvXeX8UmN23bx/btm1b8V6j0aDRaOTVZEk5OnPmDI3GoUK3\n0u72CXdQdufMk6MEg6PZbNJsNlccO3v2LMePH4d+2s67kwAiIr4X+Fvgp1JK/32dc9zOW+pjdemg\n3BJbwyjP7bwLzYGIiMcCO4ClFRhPjoinAAvt1yvJciAeaJ/3O0ALmC6yXZI6t15+wFbzBuqSEV/3\n1RvLFZ2jIW1F0aswng58Bpglm3N5IzAHvJqsLsQPA38C3AO8E/g0sC+l9O2C2yVpE+vtX3DvvfcO\nxBbJdV+90Wq1uOWWW9i371kr7vXVV+/nlltucTMoVa/XJIqyX5hEKZVivcJPF110SW2rPnarjqWO\nVyZ2XpBgW/te/2WCpw59kuPqUujqTt9UoiziZQAhFW/96oGvr7yqYJ7quPLgXFDzhlX3eiLBYARu\nW+GKmXzkGUDUoZCUpJpZPz/gknWO914Qqgrd7s5ZxE6Vq68/PT3VXhXyQ+2j+8hSw6aAt5IlfF5G\nVsnzLUxPTw3FdEaRO5pqawwgJJ1n/fyAB9c5Xo+8ga3abEvs9fJB8s77WBm4Lf83KK6SZz9YGVgN\nZwBVRwYQks6zVJlwZOQI2RPf/cAkIyOv46KLLlnj+I2Mj9djX4c8LY04XH/9zxTy9Lt6RGNl4LYL\nmACOAH+17Phy/R24darIUujqQa9zIGW/MAdCKsV6+QF5bL9dd2vNt+eZ97HRfP7KxM7liZNLCZX1\nSfgsSx129BwUJlEaQEilWW8r5EHeInnlCpT3tH/hnlrVeZ1KQJqamurx+isTItcK3K66an9617ve\nla6+ev9AB24bqeOKmX7Ul6Ws82IlSklFOr9CZQvIr2JlpxUw16vYWZdKnmUroxT6MOibSpSS1G/u\nuOOO9p+W5tuX5yIket2pstMKmOtV7KxLJc+yuaNn/RhASMpdkaWXi7r2wsICN9xweNkT7vKtxyeB\nHwcOP3z+2Fj29NutIrc2HwbDGkDVkaswpD5UdD2CrSpyuWPRSylX1hn4ceAlnFtpchsjI6e46qr9\nHdWL2Mj6K1wGcyWLBlivSRRlvzCJUkOs7tX4NkoOrPO1z8/yX2hXfizmPhdVAdMyz9qMqzAMIDSk\niupE8+h4ilxqV/QyvqmpqXVWWtyRgPTOd76zp+uvJ6+VLHUPLFUflrKWhlAR1fjynBYosthP0YWE\n1q+8eSr7Lvv393T99WxWAbNTlnlWFQwgpD5RRCeaZ8dT5PbYRW+93c95CZZ5VlUMIKQ+kXcnmnfH\ns5VOeKNk0OXvldHBN5uTjI3tJVtp8STgMGNje7e00qJMVZV5rmsir0rU6xxI2S/MgdAQy7Ma3/rz\n/luvsNhpcuBGc/brvVdWCe1+q7BZdpln8y36m0mUBhAaUnlm7xfZ8WzWCW+UDLpZomi/dfCd6iWR\ntcwyz0WuhlHxDCAMIDTk8upEq9hfYLPApcyn6TrI44m+qGWhq7mpVf9zFYY05PLK3q9i3n+zOfuN\n3hvEbZvzSGRdKvPcarV6LnS1EbfV1nKWspaGWBX7C2xWynmj9watzPNSIuvKjbUOsriYmJ4+zPz8\nfFf/HkWXebYMt5YzgJBU6v4CSysqZmaOsLiYWL05FbDue3VeTrkVnW6sVReb/dvVqa0qnlMY0pCo\n07K7jaZO+nU55XKd3uui61sUYRD+fZQPRyCkAXf+LpMwPp7tJJn3HHmnNps66ddtm7u91/34RO+2\n2loSKVvZ0DciYhSYnZ2dZXR0tOrmSLV34MB1zMzc2S4YtQ84zsjIEcbG9nLs2G1VN2+gbOVenzlz\nhkbjUK0CPA2uubk59uzZA7AnpTTXy7UcgZBy0mq1OHnyZK2eyLaSpFfHz9EPtpoQWecnen8WtBFz\nIKQe5bkhVd66WXZX58/RD3pd4pjX0tw8+LOgThhASD1otVpcc82B2u6E2E2Snjs69qYfEyLX48+C\nOtJrJaqyX1iJUjVwfvXA+lbm66TapBUG81FFZc+8+bMw2PqmEmVEXB0Rt0bE30fEQxHxnDXO+c2I\n+FJEfCMiPhIR/ROma2ide0L7lfaR+lbm62TZnRUGe7O0bPO3fuvVfb/E0Z8FdaroJMrHAp8F/gD4\nwOo3I+LlwIuB5wP3Ab8FTEfEFSmlfym4bdKWrEyW+xHgDdS5Ml8nSXpWGNya9ZZtfvrTn+bLX/5y\nXyYf+rOgThUaQKSUjgHHACIi1jjlRuA1KaUPtc/5OeBB4HrgliLbJm3Vyie0y4AJ4AjZqGC91vGv\nzqJfrz39WI9gSZUrBVbmCmTLNmdmjgCv7Nslsv38s6CS9ToH0ukLeAh4zrKvf6B97IdXnfcx4KYN\nrmMOhCp1/hzxQoLid0LsxlZ2eCxrR8e85LGLZS8GOVeg334W1Lm+yYHYxKXtD/HgquMPtt+Tamnp\nCW1k5AjZk+fXgAYXXLCN0dGnF7YTYje2kkVf1o6Oeal6pcAg5wr028+CqlFaJcqIeAi4PqV0a/vr\nK4FPAE9MKT247LxbgO+klG5Y5zqjwOy+ffvYtm3bivcajQaNRqOojyA9rM7VA1utFrt372ZlQSPa\nXx+m1Wr1/TB0HT5jHdpQFxacqqdms0mz2Vxx7OzZsxw/fhz6vBLlA0AAl7ByFOJi4DOb/eWbbrrJ\nUtaqTJ2rB9Zth8ciOpc6fEZzBeq5z4rOWeuhelkp655VNoWRUrqPLIh49tKxiHgc8EzgU1W1S9rI\n6l0W61Q9cEldChoVWc2wLp9x2HemrHoaSRXrNYlioxfZMs6nAE8lS5j839pfX9Z+/2XAaeAngX8H\n/DdgHviuDa5pEqVKV3XCXrfqUNDoXBsm222YzLUNdfiMS1qtVpqamurrxMluDXIS6SDLM4my6ABi\nfztwWFz1+oNl57wK+BLwDWAa2LHJNQ0gVLqiO8O8VZ1FX0bnUvVnHHZTU1Pt+35q1b/xqQSkqamp\nqpuoNeQZQBRdB+IONpkmSSm9iiyIkGppq7ssVqnqHI0ychSq/ozDzoJTcjtvaRNVJezlkXy4UfGo\nIpXZuVT1GYedSaRyN05pE2Un7A3CVsrn18q4H5hkZORGxsftXAbFsCeRDjsDCGkTZXeGg5LZnmfn\nsnr1y1bkcQ2tZMGpIddrEkXZL0yiVAXKStgbxMz2XlYo5LH6pd9W0EhFGpRS1lLfKOtJayvlkev+\nZN1LrYw8RmMGZURHqhuTKKUuFJ2w103y4aBXAcxj9Us/rqCR+oUjEFKNdJNvMehP1nlsVjXIG15J\nVTOAkGqmk+TDpSfrxcW3kj1ZX0b2ZP0WpqenNp3OqPu0B+Sz+qUuJa+lQWQAIdVMJ/kWW32y7qcl\nonmsfnE5qVQcAwipQhuNBGyUfLjVJ+t+m/bIYymotQqkYphEKVWg2wTI1VUpt1IFsB8TCvMoV23J\na6kYjkBIFeh0JGCjKYdun6zzSCisKncij23T67j1utTPDCCkAmzU0XaTALlRoNFtbYpeEgr7KXdC\nUjkMIKQcddLRdjoS0Gmg0emTdS8Jhf2WOyGpeAYQUo466Wg7HQkooobBVhIKe10yKmkwmUSpyuWx\nbXUddJqk2GkCZBFbYm8lobCq7cwl1ZsjEOpKnkl0gzav3s2IQScjAUXWMOgmodBiTJLW1OtuXGW/\ncDfOShSxo+H4+EQaGbmwvfPkqQSTaWTkwjQ+PpFjy8uzlZ00N9upsqxdQDdz7t/q5va/1c19/W8l\nDas8d+OsPCDousEGEJXIu7MfxG2rUyquo+1lS+w81CWQkdSbPAMIcyC0qSIKEA3qvHqzOUmjcYjp\n6cMPHxsbm+i56mHRu4BuxmJMklYzgNCmiujsi0gQrINB72irDmQk1YcBhDZVRGe/lVLM/cSOVtKg\ncxWGNpXHaoC1Vm+4yZEk9S9HINSRrc7tb7Zp1CAP90vSIDOAUEe22tmvrMy4DzjOzMwRGo1DHDt2\nG5D/cP+gFKaSpDozgFBXuunsy94+utstsqtSZIBTZfBk4CYNF3MgVJgi9nLYSN03fCqy8maVVT0H\nraKopM4YQGhTWy1fXWYJ5F43fMqzRPd6igxwqgye6hy4lfHvKg2tXitR9foCXgk8tOr1NxucbyXK\nkuRRvrqsEshTU1PtNp5aVdnyVALS1NTUmn+viBLdazl27FhhlTerrOpZ14qiZf27Sv0mz0qUdRmB\n+CvgEuDS9uuqapsjyOfJsqylmp2Mdqx+Gm21WlxzzYFCn56XhvcPHDjQPpL/dE7ZU0V1+d4bqfOo\niDQweo1Aen2RjUDMdXG+IxAlyPvJsoy9HNYb7fixHxs772n0oosuWfZ1cU/P59r0BkcgSlLHNkl1\nMYgjEDsj4u8j4mRETEbEZVU3aNjl/WTZzfbRW7XeaEdErHoafSqnT38T+JX23yzm6XllXsZLgQkg\n/625i9z2u87fez11HRWRBk6vEUivL2Ac+Fng3wLXAJ8E7gMeu875jkCUoO5Pcffcc8+6IxrLRzvO\n/xzLvy72M56fl7GQoJh5+Sp3y6zbTp11/9mVqpTnCESkrFOujYjYBvwtcDSl9O413h8FZvft28e2\nbdtWvNdoNGg0GuU0dAgcOHAdMzN3srj4FlbuVbH34SJQZeu21sPtt9/OxMQE2cjDZcDtZCMBS19f\nB9wJ5P8ZW60Wu3fvZmUdDIDfBX6FD3/4w1xzzTU9fY/VqqzqWaeKonX82ZXK1mw2aTabK46dPXuW\n48ePA+xJKc319A16jUCKeAF3Ab+9znuOQJSkbk+WKS3PKZhsP9lPbriqY+MRiGJHBVa2t9hVKFqp\njj+7Uh3kOQJRebBwXoPgXwGngRev874BRMnKSIDsxFaHps/vxJ+aYNuKTv2CC7al0dGn5/4Z7ciq\nVZefXaku8gwgKi9lHRFvAD5ENm3xb4BXA98Bmhv9PZWnLltTd5Ict1Y719oI7KKLLuH06XNfX3NN\nMSWv3TCsWnX52ZUGUeUBBPC9wPuAi4AvA58A9qaUTlfaKtXOyloPy3MKNq5suV4nXmanbkcmadBU\nHkCklMx6VEeWlgzOzBxhcTGxMjlu8yWDqztxO3VJ2rq61IGQOlJWZUtJ0sYqH4GQ1rPW9tDmFEhS\nPRhAqHY6qfXg9IMkVcspDNWOGyFJUv05AqFaWdo/YmX1xoMsLiampw8zPz/vyIMk1YAjECrE6q2z\nO+VGSJLUHwwglKuFhQUOHLiO3bt3MzExwa5duzhw4DrOnDnT0d9fWethuY1rPUiSymUAoVz1mr9Q\nx+2hJUnnM4BQbpbyFxYX30qWv3AZWf7CW5ienup4OmOYaz1sdepHkspmEqVys9W9KlYbxloP3W5T\nLklVcwRCuck7f2Hnzp1ce+21Ax88gEtXJfUfAwjlxvyFrclr6keSymQAoVwNc/7CVrl0VVI/MgdC\nuapb/sJa+2nUzVa3KZekKhlAqBBV71WRZ1Ji0UFIr9uUS1IVnMLQQMojKbHXoljdcOpHUr9xBEJA\nfwz1d6rX/TSW7sVrX/s7fOpTn29fZx9wnJmZIzQahzh27LZc21y3qR9J2owBxBBrtVp89rOf5e1v\nfwcf//jcJxu4AAAPlElEQVQdDx8vuv5A0cHKVutRrDXtUfamXlVP/UhSp5zCGELLh+af+9wGH//4\nZymj/kBZUwJbrUexctrjPe2jroyQpLUYQAyhcx3lG4CHgN+jjPoDZRVL2ko9ivNrMextv+OmXpK0\nFgOIIbOyo/yh9tHin7LLLpbUbVLi+dMeu4AJwKJYkrQWcyCGzMqO8p/bfy6+/kBe+2R0qtukxLVr\nMUwCP04WhGTGxiZcGSFJGEAMnfM7yqWn7GLrD1RVLKnTpMT1azGc4sor9/Orv/pyV0ZI0jIGEEPm\n/I7ydcDPUfRTdj8US2o2J2k0DjE9ff69cEdMSVrJAGIIrdVRXnXVfl7ykhfytKc9rbDOfKMOug6s\nxSBJnTOAGEJFdZSb1Xfolw7aWgyStDkDiCGWV0fZ7b4TdtCS1P9cxqmelVXfQZJUH7UIICLiRRFx\nX0T8c0TcGRE/UnWbBkWr1eL222/Pvc7C8uuXWd9BklQPlQcQEfFc4I3AK4GnAZ8DpiPiCZU2rM+V\nVTa6k/oOkqTBU3kAARwF/mtK6b0ppS8ALwC+Afxitc3qb2VNK2x134n1FD1iIknKR6UBREQ8EtgD\n/OnSsZRSAmaAK6tqV78rc1phK/tOrKWsERNJUj6qHoF4AjACPLjq+IPApeU3ZzCUPa3Q7b4TazER\nU5L6S12XcQZZbeV1HT16lG3btq041mg0aDQaRbarL5RdNrrX+g5LIyZZ8LDU3oMsLiampw8zPz/v\nsk9J6lKz2aTZbK44dvbs2dyuX3UA8RVgEbhk1fGLOX9UYoWbbrqJ0dHRotrV16oqG73V+g5lb7Ql\nScNgrYfqubk59uzZk8v1K53CSCl9G5gFnr10LCKi/fWnqmrXIOh1WqHMZMa8EzElScWregQC4E3A\neyJiFriLbFXGY4A/rLJR/WyppPTb3vZm4M1dTSt0W1UyD52OmGxWKluSVKKUUuUv4IXAF4F/Bv4M\nePoG544CaXZ2Nmml06dPp/HxiUSWP5KAND4+kRYWFjq+xvj4RBoZuTDBZIJTCSbTyMiFaXx8osCW\np7SwsLBu2/P4XJKklGZnZ5d+j46mHvvuSGnDXMXaiYhRYHZ2dtYciFUOHLiOmZk728s39wHHGRk5\nwtjYXo4du23Tv99qtdi9ezcrkxlpf32YVqtV+JP/WomYvX4uSVJmWQ7EnpTSXC/XqsMUhnKQx0qG\nOiQzrk7EdIWGJNVT1XUglJM8aj/UMZnRUtmSVE8GEAMij84/r6qSeapjUCNJMoAYGHl1/nlUlcxT\nHYMaSZI5EAOl2Zyk0TjE9PThh4+NjU101fl3W1WyjKWVeXwuSVK+DCAGSK8lpZfbrKpkmfUiNvtc\n1oeQpPIZQAygrZaU7sbKza+ypZUzM0doNA4VtrRy9eeqouiVJCljDoS6VuZ24RtxB09Jqo4BhLpW\nh6WVdQliJGlYGUCoa3VYWlmHIEaShpkBhLpWh6WVdQhiJGmYGUBoS6quF1GHIEaShpmrMLQleS4Z\n3SrrQ0hSdQwg1JMyloyupw5BjCQNKwMI9b0qgxhJGlbmQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK4Z\nQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK4ZQEiSpK5VGkBExBcj4qFl\nr8WIeFmVbZIkSZurejfOBPw68E4g2sf+qbrmSJKkTlQdQAB8LaX05aobIUmSOleHHIj/HBFfiYi5\niHhpRIxU3SBJkrSxqkcg3gLMAQvAvwdeB1wKvLTKRkmSpI3lHkBExGuBl29wSgKuSCm1UkpvXnb8\nryLi28D/FRGvSCl9O++2SZKkfBQxAvG7wLs3OefedY7/OVmbvh+Y3+gCR48eZdu2bSuONRoNGo1G\nZ62UJGmANZtNms3mimNnz57N7fqRUsrtYr2KiIPAHwJPSCmt+SkjYhSYnZ2dZXR0tMzmSZLU1+bm\n5tizZw/AnpTSXC/XqiwHIiL2As8E/gfZ0s1/D7wJuHm94EGSJNVDlUmU3wKeB7wSeBRwH/BG4KYK\n29Q3Wq0WJ0+eZMeOHezcubPq5kiShkxlAURK6TPAlVV9/361sLDADTccZnp66uFj4+MTNJuTbN++\nvcKWSZKGSR3qQKgLN9xwmJmZO4FJ4BQwyczMnTQahypumSRpmFRdB0JdaLVa7ZGHSeBg++hBFhcT\n09OHmZ+fdzpDklQKRyD6yMmTJ9t/2rfqnf0AnDhxotT2SJKGlwFEH7n88svbfzq+6p07ANixY0ep\n7ZEkDS8DiD6ya9cuxscnGBk5QjaNcT8wycjIjYyPTzh9IUkqjQFEn2k2Jxkb2wscBp4EHGZsbC+v\nec2ruP3225mf37CApyRJuTCA6DPbt2/n2LHbaLVaTE1NcddddwHwjGc8g4mJCXbt2sWBA9dx5syZ\nilsqSRpkBhB9aufOnVx77bX8xm+8ymWdkqTSuYyzj7msU5JUFUcg+pjLOiVJVTGA6GMu65QkVcUA\noo+5rFOSVBUDiD633rLOZnNyzfNbrZbLPSVJPTOJss8tLeucn5/nxIkT627v7S6ekqQ8OQIxIJaW\nda43beEunpKkPDkCMQRc7ilJypsjEEPA5Z6SpLwZQAwBl3tKkvJmADEEXO4pScqbAcSQ6Ha5pyRJ\nGzGJckh0utxTkqROGEAMmZ07dxo4SJJ65hSGJEnqmgGEJEnqmgGEJEnqmgGEJEnqmgGEJEnqmgFE\nH2s2m1U3oTa8Fxnvwznei4z3IeN9yF9hAURE/GpEfDIivh4RC+ucc1lE3NY+54GIeH1EGNR0yP8h\nzvFeZLwP53gvMt6HjPchf0V21o8EbgH+z7XebAcKU2S1KPYCzwd+HvjNAtskSZJyUFgAkVJ6dUrp\nLcDn1zllHPifgYMppc+nlKaB3wBeFBEWuJIkqcaqnC7YC3w+pfSVZcemgW3AD1XTJEmS1Ikqn/Qv\nBR5cdezBZe99bp2/92iAu+++u6Bm9Y+zZ88yNzdXdTNqwXuR8T6c473IeB8y3ofMsr7z0b1eK1JK\nnZ8c8Vrg5RuckoArUkqtZX/n+cBNKaULV13rvwJPSildu+zYdwNfBw6klD68ThtuAP6o40ZLkqTV\nDqaU3tfLBbodgfhd4N2bnHNvh9d6APiRVccuaf939cjEctPAQeCLwDc7/F6SJCkbefh+sr60J10F\nECml08DpXr9p258BvxoRT1iWB/ETwFngbzZpQ09RkyRJQ+xTeVyksByIiLgMuBD4PmAkIp7SfutE\nSunrwIfJAoWbI+LlwPcArwHenlL6dlHtkiRJvesqB6KrC0e8G/i5Nd76sZTS8fY5l5HViXgWWe7D\nHwKvSCk9VEijJElSLgoLICRJ0uCybLQkSeqaAYQkSepa3wYQEfF9EfH7EXFvRHwjIuYj4lUR8ciq\n21aGiHhRRNwXEf8cEXdGxOolsQMtIl4REXdFxFcj4sGI+GBE7Kq6XVVr35eHIuJNVbelChHxxIi4\nOSK+0v698LmIGK26XWWLiAsi4jXLfj+eiIhfr7pdRYuIqyPi1oj4+/b/B89Z45zfjIgvte/LRyJi\nRxVtLdpG9yIiHhERvxMRfxkRX2uf856I+J5uvkffBhBk+2gE8MvADwJHgRcAv11lo8oQEc8F3gi8\nEngaWdXO6Yh4QqUNK9fVwNuAZwJjZJu3fbhdjGwotYPIX2b9Kq4DLSIeD3wS+BbZXjtXAP8HcKbK\ndlXkPwP/EXgh2e/KlwEvi4gXV9qq4j0W+CzwIrLChiu0V/y9mOzePIMseX86Ir6rzEaWZKN78Rjg\nqcCryfqQnwZ2A3/SzTcYqCTKiHgp8IKU0kBGlEsi4k7gz1NKN7a/DuB+4K0ppddX2riKtIOnfwT2\npZQ+UXV7yhYR/wqYBf4T2aZ0n0kp/e/VtqpcEfE64MqU0v6q21K1iPgQ8EBK6ZeXHXs/8I2U0lqr\n4wZORDwEXJ9SunXZsS8Bb0gp3dT++nFkhQufn1K6pZqWFm+te7HGOU8H/hz4vpTS33Vy3X4egVjL\n44GFqhtRpPYUzR7gT5eOpSwKnAGurKpdNfB4sih7oP/9N/B7wIdSSh+tuiEV+kngLyLilva01lxE\n/FLVjarIp4BnR8ROgHYdnh8FpiptVYUi4gfI9lla/rvzq2Sd5jD/7lyy9Dv0/+v0LwzMttnteawX\nA4P+1PUEYIS1NyLbXX5zqtcegXkz8ImU0rpVTAdVRDyPbDjy6VW3pWJPJhuBeSPZVOYzgbdGxDdT\nSpOVtqx8rwMeB3whIhbJHhZ/LaX0/1TbrEpdStZBrvW789Lym1MfEfEosp+Z96WUvtbp36tdALHF\nDbv+DXA78P+mlP6g4CbWVbDGnN+QeAdZHsyPVt2QskXE95IFT9dYwZULgLtSSr/R/vpzEfFDZEHF\nsAUQzwVuAJ5HVvH3qcBbIuJLKaWbK21Z/Qzz704i4hHAH5Pdgxd283drF0DQ5YZdEfFE4KNkT5//\nsciG1cRXgEXObTy25GI23oRsIEXE24EJ4OqU0j9U3Z4K7AH+NTDbHomBbIRqXzth7lFpkBKdNvYP\nwN2rjt0N/EwFbana64H/klL64/bXfx0R3w+8AhjWAOIBsmDhElb+rrwY+EwlLarYsuDhMuDHuxl9\ngBoGEN1s2NUeefgo8GngF4tsV12klL4dEbPAs4Fb4eEh/GcDb62ybWVrBw8/BexPKZ2quj0VmQH+\n3apjf0jWcb5uiIIHyFZgrJ7G2w38bQVtqdpjOP+p+iEGL++tYyml+yLiAbLflX8JDydRPpMsh2io\nLAsenky2xUTXq5VqF0B0qr1e9WNk23q/DLh46QEspTToT+JvAt7TDiTuIlvC+hiyjmMoRMQ7gAbw\nHODrEbE0InM2pTQ027y3N6ZbkfcREV8HTqeUVj+ND7qbgE9GxCuAW8g6hl8iW9o6bD4E/FpE3A/8\nNTBK9nvi9yttVcEi4rHADrKRBoAntxNIF1JK95NN9/16RJwg6zteA/wdXS5f7Acb3QvgS8AHyKa2\n/hfgkct+hy50Oh3at8s4I+L5wOp8hyBblDBSQZNKFREvJAucLiFb6/uSlNJfVNuq8rSXJa31w/sL\nKaX3lt2eOomIjwKfHbZlnAARMUGWDLYDuA944zDmRbU7j9eQre+/mKzDeB/wmpTSd6psW5EiYj/w\nPzj/d8N7Ukq/2D7nVcB/IFt18HHgRSmlE2W2swwb3Quy+g/3rXpvKRfk4Q0vN/0e/RpASJKk6gzt\nfJgkSdo6AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJktQ1AwhJ\nktQ1AwhJktS1/x8Kk58BGFo+HQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11136cb38>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"nsamples = 100\n",
"Xt = np.linspace(0,10, num=nsamples).reshape(nsamples,1)\n",
"# la fonction à retrouver est y = x * 2\n",
"yt = Xt * 2 \n",
"# on rajoute du bruit\n",
"yt = yt +np.random.randn(100,1) * 3\n",
"plt.scatter(Xt, yt)"
]
},
{
"cell_type": "code",
"execution_count": 185,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"nn = Regressor(\n",
" layers=[\n",
" Layer(\"Sigmoid\", units=100),\n",
" Layer(\"Linear\")],\n",
" learning_rate=0.02,\n",
" n_iter=20)"
]
},
{
"cell_type": "code",
"execution_count": 186,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"nn.fit(Xt, yt);"
]
},
{
"cell_type": "code",
"execution_count": 187,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Xtest = np.linspace(0,10, num=nsamples).reshape(nsamples,1)\n",
"ytest = nn.predict(Xtest)"
]
},
{
"cell_type": "code",
"execution_count": 188,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x10fb29cf8>]"
]
},
"execution_count": 188,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAFkCAYAAABxWwLDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xl8XHW9//HXpymLgHRBVi0gbRJBZUlBWoQWJJA0vQhu\nwHRB9IoiS3t7RSqI4g6Cys5V4YJAYEBww1/TBgIXWsBSSNmXTlorRXaaUvYCyef3x5m0SZplJjNn\nzpmZ9/PxmAfJmZMz3zkN+X7m+/18P19zd0RERESyMSzqBoiIiEjxUQAhIiIiWVMAISIiIllTACEi\nIiJZUwAhIiIiWVMAISIiIllTACEiIiJZUwAhIiIiWVMAISIiIllTACEiIiJZCzWAMLMTzewRM1ub\nftxnZvXdnt/MzC4zs1fN7A0zu8XMtguzTSIiIpK7sEcgngXmAuPTjzuBv5nZ7unnLwSmAl8CJgE7\nAX8KuU0iIiKSIyv0Zlpmtho4jSBQeAU41t3/kn6uGngKmODuSwraMBEREclYwXIgzGyYmR0LbAH8\ng2BEYjhwR9c57r4MWAVMLFS7REREJHvDw34BM/sUQcCwOfAG8AV3f9rM9gHec/fXe/3IS8AOA1xv\nG6AO+BfwbiiNFhERKU2bA7sCze6+OpcLhR5AAE8DewEjCXIdrjWzSQOcb8BA8yp1wPX5a56IiEjZ\nmQ7ckMsFQg8g3P0D4J/pb5ea2WeA2cAfgU3NbOteoxDbEYxC9OdfAI2Njey+++4DnFb65syZwwUX\nXBB1M2JB9yKg+7CB7kVA9yGg+xB46qmnmDFjBqT70lwUYgSit2HAZkAr8AFwKNCVRFkF7Eww5dGf\ndwF23313ampqwm1pzI0YMaLs70EX3YuA7sMGuhcB3YeA7sNGck4BCDWAMLOfA/MJlnN+mGDIZDJw\nuLu/bmb/C/zGzNYQ5EdcDNyrFRgiIiLxFvYIxPbAtcCOwFrgUYLg4c7083OADuAWglGJBcDJIbdJ\nREREchRqAOHu3xjk+XXAqemHiIiIFAnthVHEEolE1E2IDd2LgO7DBroXAd2HgO5D/hW8EmWuzKwG\naG1tbVVCjIiISBaWLl3K+PHjAca7+9JcrqURCBEREcmaAggRERHJmgIIERERyZoCCBEREcmaAggR\nERHJmgIIERERyZoCCBEREcmaAggRERHJmgIIERERyZoCCBEREcmaAggRERHJmgIIERERyZoCCBER\nEcmaAggRERHJmgIIERERyZoCCBEREcna8KgbICIikg+pVIoVK1Ywbtw4Kisro25OydMIhIiIFLX2\n9nbq66dSXV1NQ0MDVVVV1NdPZc2aNVE3raQpgBARkaI2bdpMWloWA43AKqCRlpbFJBIzIm5ZadMU\nhoiIFK1UKkVzcxNB8DA9fXQ6HR1Oc/NM2traNJ0REo1AiIhI0VqxYkX6q0m9npkMwPLlywvannKi\nAEJERIrW2LFj018t7PXM3QCMGzeuoO0pJwogRESkaFVVVVFX10BFxSyCaYxngUYqKmZTV9eg6YsQ\nKYAQEZGilkw2Uls7AZgJ7AzMpLZ2AslkY8QtK21KohQRkaI2atQoFiyYR1tbG8uXL1cdiAJRACEi\nIrEy1IJQlZWVChwKKNQpDDM7w8yWmNnrZvaSmf3FzKp6nXOXmXV2e3SY2eVhtktEROJHBaGKS9g5\nEAcBlwD7A7XAJsBtZvahbuc48Htge2AHYEfg9JDbJSIiMaOCUMUl1CkMd2/o/r2ZHQ+8DIwH7un2\n1Nvu/kqYbRERkfhSQajiU+hVGCMJRhzaex2fbmavmNljZvaLXiMUIiJS4lQQqvgULInSzAy4ELjH\n3Z/s9tT1wDPA88CewHlAFfDlQrVNRESi1bMg1PRuz6ggVFwVchXG5cAewGe7H3T3K7t9+4SZvQi0\nmNnH3X1lfxebM2cOI0aM6HEskUiQSCTy2GQRESmEroJQLS2z6OhwgpGHu6momE1trQpCDUUymSSZ\nTPY4tnbt2rxd39w9bxfr90XMLgWOAA5y91WDnLsF8CZQ5+639/F8DdDa2tpKTU1NKO0VEZHCW7Nm\nDYnEjHQuRKCuroFkspFRo0ZF2LLSsXTpUsaPHw8w3t2X5nKt0Ecg0sHDkcDkwYKHtH0I8iReCLVh\nIiISKyoIVVxCDSDS9RwSwOeBt8xs+/RTa939XTPbDZgGNAGrgb2A3wB3u/vjYbZNRETiSQWhikPY\nIxAnEowm3NXr+NeAa4H3COpDzAa2JNgF5Wbg5yG3S0RERHIQdh2IAZeJuvu/gYPDbIOIiIjkn3bj\nFBERkawpgBAREZGsKYAQERGRrCmAEBERkawpgBAREZGsKYAQERGRrBVyLwwRESkzqVSKFStWqKpk\nCdIIhIiI5F17ezv19VOprq6moaGBqqoq6uunsmbNmqibJnmiAEJERPJu2rSZtLQsBhqBVUAjLS2L\nSSRmRNwyyRdNYYiISF6lUqn0jpqNwPT00el0dDjNzTNpa2vTdEYJ0AiEiIjk1YoVK9JfTer1zGQA\nli9fXtD2SDgUQIiISF6NHTs2/dXCXs/cDcC4ceMK2h4JhwIIERHJq6qqKurqGqiomEUwjfEs0EhF\nxWzq6ho0fVEiFECIiEjeJZON1NZOAGYCOwMzqa2dQDLZGHHLJF+URCkiUsbCqtMwatQoFiyYR1tb\nG8uXL1cdiBKkAEJEpAy1t7czbdrM9GqJQF1dA8lkI6NGjcrb61RWVipwKFGawhARKUOq0yC50giE\niEiZUZ0GyQeNQIiIlBnVaZB8UAAhIlJmVKdB8kEBhIhImVGdBskHBRAiImVIdRokV0qiFBEpQ6rT\nILlSACEiUsZUp0GGSlMYIiIikjUFECIiIpI1BRAiIiKStVADCDM7w8yWmNnrZvaSmf3FzKp6nbOZ\nmV1mZq+a2RtmdouZbRdmu0RERCQ3YY9AHARcAuwP1AKbALeZ2Ye6nXMhMBX4EkFZtJ2AP4XcLhER\nKWGpVIr58+fT1tYWdVNKVqirMNy9ofv3ZnY88DIwHrjHzLYGvg4c6+53p8/5GvCUmX3G3ZeE2T4R\nkbCFtV229K1Qu4xK4XMgRgIOtKe/H08QxNzRdYK7LyPYGm5igdsmIpI37e3t1NdPpbq6moaGBqqq\nqqivn8qaNWuiblpJ0y6jhVOwAMLMjGC64h53fzJ9eAfgPXd/vdfpL6WfExEpSnHuyIpteD/T9nbt\nMtrRcTHBLqNjCHYZvYjm5qaieb/FopAjEJcDewCJDM41gpEKEZGiE9eOrNhGRbJtr3YZLayCVKI0\ns0uBBuAgd3++21MvApua2da9RiG2IxiF6NecOXMYMWJEj2OJRIJEIpP4REQkPJl0ZFHkQ/QcFZkE\nLKSlZRaJxAwWLJhX8PYMJtv29txldHq3Z8pzl9FkMkkymexxbO3atfl7AXcP9QFcSrDV2259PLc1\nsA74QrdjVUAn8Jl+rlcDeGtrq4uIxNGyZcsccGh08G6P6xzwVCqlNg1iqO2tq2vwiorR6fNWOVzn\nFRWjva6uocDvIJ5aW1vT95Uaz7F/D7sOxOUEYeA04C0z2z792DwdvLwO/C/wGzM72MzGA1cD97pW\nYIhIkYrjdtnFNrw/1PZql9HCCXsK40SCSOeuXse/Blyb/noO0AHcAmwGLABODrldIiKhSiYbSSRm\n0Nw8c/2x2tqGyDqyYhveH2p7tcto4YRdB2LQEQ53Xwecmn6IiJSEuHVkXaMiLS2z6Ohwgk/yd1NR\nMZva2mhGRQaSa3u1y2j4tBeGiEiIKisrmTJlSiw6s2Ib3i+29pabgqzCEBGR6MVtVGQwxdbecqMA\nQkSkDPQuqR2HjjjTMt9xaa/0pCkMEZESFsfiUXFsk2RPAYSISAnqKv981FFfjF1J7b7KfN9++73U\n1h6uctNFRFMYIiIlpK/dKIOOumsp5HQ6Opzm5pm0tbUVfGqgq8z3hja1AzfQ2bmWpUsfXL/6Qrtn\nxp9GIERESkjPT/fXpI/Gp3jUxgWiZgLxGiGRzCiAEBEpERtv4jUh/czCXmdGVzyqZ4GoFNAExGvT\nMcmMAggRkRKx8af7KoJ9DONTUrtnme8rerW3SzzLa0tPCiBEREpEz0/3XRrpKsIUl2JMGwpE/Sp9\nJD4jJJI5BRAiIkPQtcohTsPsfW/iNY+KilUceOBkmpqaSKVSLFgwL9IExa4CUalUipqa/WK16Zhk\nTgGEiEgW4l7DoL/yz7fe+pecSmpnGjBlE1hVVlbS0tKsctVFSss4RUSy0HOVwyRgIS0ts0gkZrBg\nwbyIW5f/8s99LQvta5llpueF3V4pHHP3qNuQFTOrAVpbW1upqamJujkiUkZSqRTV1dX0rKtA+vuZ\npFKpkuv86uun0tKyOL2yIwiYKipmUVs7oUfAlOl5Eq2lS5cyfvx4gPHuvjSXa2kKQ0QkQxuvcuhS\nmqsGNl4W2vcyy0zPk9KiAEJEJEN9r3KAUl01kGnAVG6BlQQUQIiIZKjvVQ6lu2og04Cp3AIrCSiA\nEBHJQn+rHKJaNRDmctJMA6ZyC6wkoABCRMpOLp1u9xoGUdZVKNRy0kwDprgFVhI+rcIQkbIx1KWG\ncVToVQ+ZLrPUcsx4y+cqDAUQIlI2SmWpYTkuJ+1LKpVixYoVClayoGWcIlJywi4NXUpLDct91UO2\n0zdxLDteChRAiEikCjWXX0qdbrmveuhZDXQV0EhLy2ISiRk9zot72fFipwBCRCKVaWeQq1LqdMt5\n1UM2I0ndf7eMfwHXhfK7Va60F4aIRKarM+g5lz+djg6nuXkmbW1teesMuzrdlpZZdHQ4wcjD3VRU\nzKa2tjCdbj7n7JPJRhKJGTQ3z1x/rLa2IdarHvLx/ruPJA2jg4/wKjvwIjsAOwCd55wDo0bxelsb\n32lu4pfszHacxra8wmjaeaODvP9ulSsFECISmUymFfL5Rz6qTjeM1R/FtAlV1u+/sxNeeQWeew6e\nfz747wsvwPPPc1BbGw8CO7In2/EGw+no8aMdf/oT7LgjH2yyCa8ByziEl9mNl9mODioI63erHCmA\nEJHI9JxW6L6aYGjTCoN9wo2q0w1zB8/Kysq8vocwVjb0nEo4kO34f6y9/UwuO+RQzjr+OPj3v+HZ\nZ4P/dgUN77+/4QLDhsEOO8COO7LVTjvx0sfGMO+5V3jOj+NFPssL/JtXhl3Apw6dwN9vWwDAq6kU\nR1dXA4fR83frL0BxTVnFlrsX1QOoAby1tdVFpPgsW7bMm5qaPJVKubt7XV2DV1SMdrjOYZXDdV5R\nMdrr6hoyvubq1au9rq7BgfWPuroGb29vD+ttZGzZsmXpNjU6eLfHdQ6svw9Ry9s9fO899xUr3O+4\nw/2qq/zVk0/2q8HvYA9vY6y/y6bdb4J3bLaZe2Wl+yGHuB93nPsZZ7hfdpn7X//q/sAD7s895/7B\nBz1eor29PaO25uN3q9S0trZ23bMaz7U/zvUCA14cDgJuBZ4DOoHP93r+6vTx7o+mQa6pAEKkCPXX\nQf3zn//MuePa0FE0pjuKxth0FE1NTen3tapXALHKAW9qaoq6ie6exT3s7HR/8UX3e+91v+4695/8\nxP34490nT3bfeWf3YcN6BAjvjB7t94EnOcJ/yXf9ZC7xI/ib702TbwPeNG/ekNucSqV6BKO9ZRpo\nlJN8BhBhT2FsCTwMXAX8qZ9z5gPHA5b+fl3IbRKRCPQ3jP/tb5+S07RCIRMxhyLf0zRh2PgeOjtx\nMJUdJ/Kx5l/Q/s1vMrq9HZYvhxUr4M03N/zwttvCbrvBxz8OBxwAu+4afL3rrjBmDKtWreKA6mrg\nGDYuegXjcvi3GWz6ppjyRIpRqAGEuy8AFgCYmfVz2jp3fyXMdohItDLt5Ifyx73QiZjZisPqj369\n8QYsW8Y7N93ET4AqbqSa86mkjS15G4AOYN2tt8KnPw0TJsCMGTB2bBA07LYbfPjDA75EHN5/vvNE\nJBCHJMqDzewlYA1wJ3CWu7dH3CYRyaMwO/li+IQf6ZJLd3j5ZXjySXjqqQ2Pp58OEhaBvYCPAClW\ncD8HcR0zSVFFG0+xkrk8vmhRTh1wMS45lcFFHUDMJ5jaWAmMBc4BmsxsonuRbdIhIv0Ks5PPxyfc\nsPdUKNhQ+urV8PjjGx5PPBEEDqtXB88PHw6VlbD77nD88cF/P/EJqKriP79ybHqfkIPYcA9/mZdR\nAk0llKhckygyfdBHEmUf53w8fd4hA5yjJEqRIhRmRvxQk+XivHpjQOvWuT/yiPu117qfdpr74Ye7\n77jjhuTFTTZx/9Sn3I85Jkhy/NOf3J98Mlgh0Q8lHJaHfCZRFmw3TjPrBI5y91sHOe9l4PvufkU/\nz9cArZMmTWLEiBE9nkskEiQSiXw1WUTyaM2aNelh7PC20s72E25R7M752mvw8MM9H08+uaFOwq67\nwp57BjkKe+4Jn/pUMMqwySZDejmNEpSOZDJJMpnscWzt2rUsXLgQimk770wCCDP7GPAMcKS7/79+\nztF23iJFLC4dVCy3xG5vh9bWDY+lS+Gf/wye23zzIEjYe2/Ya6/g8elPQ68PUiIDyed23qHmQJjZ\nlsA4NizR3M3M9gLa04+zCXIgXkyf90sgBTSH2S4RyVx/+QFDzRuIS0Z85Ks33nwzCBKWLIEHH4QH\nHoCVK4PnPvxhqKmBI4+Emhr+NWoUT7sztro6FvdOBMJPotwX+D82zKn9On38GuAkYE/gOGAk8DxB\n4PBDd39/40uJSCH1t3/B5ZdfwkknnRrqVEQhFHT1RkdHMO2weHHwWLIk+L6zE7bcMggWvvAF2Hdf\nGD8exo0jtXw5Dz/8MJdeejmLFt29/lIHHjiJU089mX322UfBhEQr1ySKQj9QEqVIQfRXmXCbbbaP\nbdXHbIWW2Nne7t7U5H7WWe6f+5z7VlsFyY3DhrnvtZf7N7/pfuWV7o8+ulGZ5p6JncMcRqTv9aMO\ne5d9kmPvUuiSnaIpZR3GQwGESPj637/hvKLY1yFTeVl50NnpvnJlsCLiW99y/+QnN9yYbbd1P/JI\n93POcb/rLvc33hj0chuCmvN73esGh9II3IaiaFfMxEwxlbIWkSLUf37A9v0cj0fVx2xlW58glUqx\nYvly9jBjl2eegYULYdGiYBdJgD32gM9+Fr773eC/Y8dCv0V4+77+hoqdo9NHJxGkhsW3XHchhLmj\nqQyNAggR2Uj/+QEv9XM8PlUfh2LAxE53XvvHP2j8xjfZ/qknmEQQRnWY4fvsw/Bjj4WDDgoChm22\nyakdPQO3d9JfL6RnMNFdcQZu2Yr7fiflaljUDRCR+Omq7lhRMYvgj/azQCMVFeeyzTbb93F8NnV1\nEe/rkE8rV8KVV/L6f/wH67bZhpGf/SzfeuoJdqKSKzmFw5nLaBvJf2y7A5x/Pnz+80MKHlKpFPPn\nz6etrQ3oHbhVAQ3ALODxbse7K+7ALVOZrJiRCOQ6B1LoB8qBECmI/vID8rH9duysXu1+881BDsNu\nu7mDfwC+GPwX4IeBb8GVecv7GGg+v2diZ/fEya6EyvxX8oy7/nNyijP3JkpKolQAIVIwqVSqz6z3\n/o4Xhfffd7/3Xvcf/tB9//2D1RHgXl3tfsopfvY+4330sJHpDuua9B/cVb06r1UOeFNTU9Yv398K\nl+5BRPfg4sADJ/v//u//+kEHTS6twC0LYZZCLycKIBRAiEi2XnjB/eqr3Y8+2n3kyODP36hR7l/5\nSrCk8pln3L2vT7v5/fSb6afpkgzccqC9OvJDqzBERAbT2RlUepw3L3g8+GCwImLffWHWLJgyBfbb\nDyoqevzY3Xd3FW3qmm/vnovgDGW3z+4yrYDZX2JnXCp5Fpp29IwfBRAikndhbo894LXfeQdaWuDv\nfw8eL74II0dCXV0QNNTXw7bb9nndjStvdl9p0gh8Dpi5/vza2qD6ZrYKWgGzBJVrABVHCiBEilCY\nHXQu+it/nY8y1/1d+8bLLmbkPffAX/8Kt90Gb78d7EY5fToccUSwvHL44H/qetYZuAo4lZ4jDquY\nOHEyZ545N6f73rXCpaVlFh0duY9oiEQm1zmQQj9QDoSUsbhX4xsoOTCf196JJX4SX/U7GO4fmLmb\nuU+c6H7uue5PPZX1tTfOS2hPV34M5z6HNZ+vMs8yGCVRKoCQMhVWB52PjifMpXbLli3zj4H/F9P9\nHg5wB3+P4T6fT/sJ4CvuvXfI13Z3b2pq6melxd0O+BVXXJHT9fuTr4TIuAeWEh/5DCBUSEqkSHRV\n4+vouJhg7nwMQTW+i2hublpfjCgb7e3t1NdPpbq6moaGBqqqqqivn8qaNWuyvlYoxX6eew4uvJBt\njzySZ4FzuZnVbMNxXMN2vMwU5nEFsGzt2uyv3U3PvITuVgEwefLknK7fn8rKSqZMmZLztEXP6ZdV\nQCMtLYtJJGbko5kifVIAIVIkwuig89nx9N8JZ5kc+Oqr8NvfwqRJMGYMzJ3LJjvtxHRgWy7lSG7l\nOo7jNUZlf+1+9F95M/4VNsMILEUyoQBCpEjkrYNOy3fHM5ROuKuU8/JHHoEbboCpU2HHHeGUU3jL\nnUfnzGHFffex1R13sLqugbcrvpfxtbOVTDZSWzuBYKXFzsBMamsnDGmlRSFFVea5dxluKUO5zoEU\n+oFyIKSM5bMaX//z/kOvsJhpcuDq1at9yuFTvBb8GvA30i/+/mc+42+ed54ffcihG12jUCW0i61Q\nU6HLPCvforgpiVIBhJSpfGbvh9nxDNgJP/mk3/jx3fxZzB38Kcb69/myjxs2wuvqGgZNFC22Dj5T\nuSSyFrLMc5grbSR8CiAUQEiZy1cnWrCO57XX3H/3u2DfCfDV4JdS6/txv0Nnj8ClkJ+m4yAfn+gL\nVeZZm1oVP63CEClz+creD3Xe3x0WLYLjjgvyGr79bdhmGx4680x2BE7hKh7gM4Clf6D7Sofy2bY5\nH4msXWWeU6kUTU1NpFIpFiyYl3Pxrt60rbZ0p0qUImUslP0FXnkFrrkGrrgCUikYOxZ+8IMgkPjo\nR9kyleK9X/yC/ko5B8qjzHNXImsQPHS93+l0dDjNzTNpa2vL6t8j7DLPKsMt3SmAEJHcOx53WLgw\nWH755z8Hm1Z96Uvwu98FyzGHbRjsHKyUM1A2ZZ4z3VgrLlSGW7rTFIZImQhl2d3atXDppfDJT8LB\nB8PSpXDOOUEBqOuvD44N2/jPzEBTJ8W6nLK7TO91vpfmFkIp/PtInuSaRFHoB0qiFMlKKMvuHn/c\n/cQT3bfc0r2iwv3LX3a/4w73zs6sLjNQMmgxrrYYyr0u5AqKfCrGfx/RKgwFECJZyNuyuw8+cP/L\nX9w/97ngT8cOO7iffbb7c8+F0u5iNJR7XagVFCLu+Q0glAMhkidx3GJ7KEl6G72P11+Hq66Ciy+G\nlSth4sSgauSXvgSbblrotxRbQ02IDCWRNU/i+Dst8aEAQiRH7e3tTJs2M915BOrqGkgmG/O+jC5b\n2STp9X4fuwC/2WVXvrD6Vezdd+GYY+Cmm2C//QrT+CKTa0Jk2CsoshHn32mJDyVRiuQglUpx2GH1\nsd0JMZskva56BPvyY27kP1iBcfAzz3DTttvDM89AY6OChwEUY0Jkf7S7p2Qk1zmQQj9QDoTEwMbJ\ncvGtzJdJkt6yp5/2KeB3srs7eBtj/SQu9S24IjbvoxgUa0Jkd6o2WdqKphKlmR1kZrea2XNm1mlm\nn+/jnJ+Y2fNm9raZ3W5mxROmS9na8Antu+kj8a3MN+Cyuw8+gOuvZ4f6epqALdiML/InqlnG5ZzM\n29QB8Xgfcda1bPNnP/tx0S9xVLVJyVTYORBbAg8DVwF/6v2kmc0FTgG+CqwEfgY0m9nu7v5eyG0T\nGZKeyXL7AecT58p8fSbpjRkDV18N558PK1dSMWkSk//1LxbyHeCL3X46Pu8jjvrLFXjggQd45ZVX\nijL5UNUmJVOhBhDuvgBYAGBm1scps4Gfuvvf0+ccB7wEHAX8Mcy2iQxVz09oY4AGYBbBqGC8KvP1\nzqKv3HHHoDrkr34FL78MX/kK/PnPbLn33nyofioVLbPp6CB272MgUa4U6JkrMAlYSEvLLOBsFiyY\nV9C25IuqTUrGcp0DyfQBdAKf7/b9x9PH9ux13l3ABQNcRzkQEqmN54jbHeK1jr93jsaHwa+qrPKO\n0aPdhw93//rX3XvNZRdbPYJQCmRloZRzBYrtd0EyVyp1IHZIv4mXeh1/Kf2cSCz1/QktwbBh97L3\n3pXceOMNkX9K6/pkvDW/51RS/Df/w5ZtKeaN2Zkjli6FXXbZ6GfiXI+gL/19+k8kZhTk03+x7WOR\njWL7XZBoxLEOhBEEFgOaM2cOI0aM6HEskUiQSCTCapfIeslkI4nEDJqbZ64/dthh8Vgnn0qluLe5\nibl8he8wly14mys4gV9SyXPPzib13nsM1BXEqR5Bf/K9i+VQlEOuQKa/Cyo4FU/JZJJkMtnj2Nq1\na/P3ArkOYWT6QFMYUoJitx/Am2/601/7mr8K/i6b+kWc6jvx7/TQ+ioHvKmpqaBNWrZsWd7vUVNT\nU3oYdlWv6YPCvsdSWLaZi6inkSR7RbOMcyDuvhJ4ETi065iZbQ3sD9wXVbtEBtJ7l8XKykqmTJkS\n/aeud9+Fiy6C3XajqrGRm4CxnM9sLuZ5Ppo+qbCfjNvb26mvn0p1dTUNDQ1UVVVRXz+VNWvW5Hzt\nuBRtKvedKVVwqszlGoEM9CBYxrkXsDfBaMN/pb8fk37+dGA1cATwaeCvQBuw6QDX1AiEFFxsP2m9\n/777FVe4f+xj7sOGuX/ta+4rV8bik3HeNvEa9PrRf/qP3UhUAZRyEmkpK5rdOAmyiTqBjl6Pq7qd\n8yPgeeBtoBkYN8g1FUBIwYXdGWats9P95pvdq6qC/42POcb96afXPx11Fn0hOpeo32O5i8s0kmSn\naFZhuPvdDLLfhrv/iCCIEImlOCTs9XDnnTB3Ljz4INTXw403wj779Dgl6iz6QqxQiPo9lrtySCKV\ngcVxFYZIrES1XG+jzPZHHoHvfQ8WLID994e77oLJkwe8RlQrKgrZuRTDqpFSpIJTot04RQZR6IS9\n3smHh1R05iZxAAAd/0lEQVRVcftHP4bvsw+sWAG33AL/+MegwUOUujqXiopZBCM3zwKNVFTMpq5O\nnUupKPck0nKnEQiRQRT6k1ZXZvuH+T2n8xjf4be88fzzXLb7HpzyyEOwySZ5fb2w9FUro7a2YUid\nSz7qDKhWQf5pGqnM5ZpEUegHSqKUCBQqYW/ZsmU+DPwEvu4vsp2/zeb+M870D/P7os1sz2WFQj5W\nv8R2BY1IBEqiDoRIMen6pJVKpWhqaiKVSrFgwby8V5187ZZbeAj4PVdxG4dTRYqz+DlvUA/0vZVy\n79oUcZNLrYx81BlQrQKRkOQagRT6gUYgpBSlUu5HHOEOvgh8X3486PLHUv9knY+loKpVINKTRiBE\nSsXatfDd78InPxmssrjpJn52+BQeqriIwZIPS/2TdSarXwpxDRHpmwIIkSh0dsLVV0NVFVx+Ofzw\nh/D003D00SRvvH7QzPau2hQdHRcTLJMcQ1Cb4iKam5sGnc6I+7QH5Gf1S1xKXouUIgUQIoV2//0w\nYQJ8/etQWwvLlsFZZ8GHPgRklm8x1E/WYe5PkW/5WAqq5aQi4VEAIVIoL78M//mfQfDw/vuwaBGp\ns89m/mOP9TkSMFDy4VA/WRfbtEc+6gyoVoFISHJNoij0AyVRSrF5/333Sy5xHznSfdQo9//5H1/9\n8stZJUD2tSV2tptJFXNCYT42qyrHDa9EeiuazbTCeCiAkKLyj3+47723u5n7CSe4v/KKu2e+OddA\nKy2yrU2Rj82P+gpkRKR4aBWGSMwtv/9+nq2vh4kToaICFi+G3/8ePvKRrBIgB5pyyLY2RS4JhcWU\nOyEihaEAQiSP2l99lQs+tScjJ0xgq+Zmvg00bLMda7rlMWSaAJlpoJFpoaZcEgqLLXdCRMKnAEIk\nXx57jBcqq5jzxGM0cSCfoJXf0shtd9zfo6PNdCQgjBoGQ0kozHXJqIiUJgUQErliqEkwoLfegrlz\n8Zoahr22hoM5k6+yiJepoa+ONtORgDBqGAylJLeKMYlIXxRASFby2dmXxLx6U1NQRfKii2ibNo29\ngLs5sddJG3e0mYwEhFnDIJv9KVSMSUT6lGsWZqEfaBVGJMLYdyHTlQix9MIL7kcfHSxjOOww97a2\nIS2THGxpYaF2AR1MtktGRSSetIxTAUTB5buzL9qaBB0d7r/7nfuIEe7bbut+/fXunZ3rnw6ro426\nhkFcAhkRyU0+A4jhBRzskCLVlUQXDKNPTx+dTkeH09w8k7a2tqyH0zOZV49dmeGnn4ZvfhMWLQrK\nUJ9/Powe3eOUZLKRRGIGzc0z1x+rrW3IuephZWVlpPejK3eira2N5cuXM27cuPj9+4hIQSmAkEGF\n0dn3nFef3u2ZGM6rv/cenHsu/PznsPPOcOedcMghfZ5a6h1t1IGMiMSHAggZVBidfVeCYEvLLDo6\nnCAYuZuKitnU1sZok6PFi+Eb3whGH04/HX7wg/WbXg1EHa2IlDqtwpBB5WM1QF+rN2K9ydFbb8Gc\nOXDAAbD55tDaCr/4RUbBg4hIOdAIhGRkqHP77e3tTJs2M51DEairC34utsP9LS1BrsOLLwZ5DrNn\nw3D9ryIi0p3+KkpGhtrZ9yyBPAlYSEvLLBKJGSxYMA/I/3B/KpVixYoV2Qckr70G3/kOXHVVkONw\n++2wfvpGRES6UwAhWcmmsw9j9cZABhvtGNDf/gbf/nYwdfH73wd5D2Z5a1t3Qw5wIr52nF9bRApP\nORASmkKXQB7Shk+vvgqJBBx1FNTUwBNPwAknhBI8hFl5M8qqniVRUVREsqYAQgY11PLVhSyBPKQN\nn26+GfbYA5qbeeG885h/0km0vfNO3trUW5g7Wka5W2acd+os+n1WROIs10pUuT6As4HOXo8nBzhf\nlSgLJB/lqwtVArmpqSndxlW9KluucsCbmpo2nPzSS+5f/rI7+LqpU/3Ygw8NvcLiggULQqu8GWVV\nz7hWFA2j9LpIKchnJcq4jEA8DmwP7JB+HBhtcwTy88myUEs1MxntSC1bxkPf+x4ffOITcNddPH/B\nBUx8/iVuXvQQYX167hrer6+vTx/J/3ROlLtlxnWnzjiPioiUjFwjkFwfBCMQS7M4XyMQBZDvT5aF\n2Muhv9GOQw6p9aMPPtRvTr+Jm8CrR23b7dNpeJ+eN7TpfI1AFEgc2yQSF6U4AlFpZs+Z2QozazSz\nMVE3qNzl+5NlNttHD1V/ox0Hv/wSl951J5P5MF/hco5hb5ateQ/4bvonw/n03DMv4zSgAcj/1txh\nbvsd59fuT1xHRURKTRwCiMXA8UAdcCLwcWChmW0ZZaPKXSETIIeir+S4rloVqVSKpqYmVixezM3W\nyQ+feIy72I9PspxbOBR4GLgM+Eb6J8N5jxt3ZI1AONM5UVb1jFtF0bj/7oqUCvNgWiA2zGwE8Aww\nx92v7uP5GqB10qRJjBgxosdziUSCRCJRmIaWgfr6qbS0LKaj4yJ67lUxYX0RqELLuNbDn/8MJ57I\ne+vWMfP11/kjqwhWZswnGAno+n4qQQyb//eYSqWorq6mZx0MgF8B3+W2227jsMMOy+k1eouyqmec\nKorG8XdXpNCSySTJZLLHsbVr17Jw4UKA8e6+NKcXyHUOJIwHsAT4eT/PKQeiQNrb22OXyb4hp6Ax\nnefQ2HNVx+rV7tOmBZPeRx3ly++9t9d8eO/58XaH8N5joVahSE9x/N0ViYN85kBEHixs1CDYClgN\nnNLP8wogCqwQCZCZGCw57t+/+537jju6jxzpft117p2d7t5XJ763w4genfqwYSO8pmbfvL9HdWTR\nisvvrkhc5DOAiLyUtZmdD/ydYNrio8CPgQ+A5EA/J4UTl62p+0uO+zA1XAB89FvfgilT4Ior4KMf\nXf98XxuBbbPN9qxeveH7ww7LsOR1lmK7YViZiMvvrkgpijyAAD4G3ABsA7wC3ANMcPfVkbZKYqdn\nclyQU3AId3I1RzMaeOnnP2f7M87YqAx1f514ITt1dWQiUmoiDyDcXVmPkpGuJYMtLbPYtONdzuUe\nZvEH7mI4P5x0MNeceeaAP9+7E1enLiIydJEHECLZSCYb+fGUqZx0/zcYQ1BVoe3ww7jhxuujbpqI\nSFlRACGxtdH20O+9x6hf/YoLH7ifd/fckyWnnMKpBx+sUQQRkQgogJDY6avWw7cOOJBL31jL8Kee\ngp/8hM3nzmXScP36iohERX+BJXa6b4Q0jM/y35zBz+67kX9vtRW7LlkC++wTdRNFRMpeHEpZi6zX\nff+IjzORu5jJL7mJi2ngE2++SdtWW0XdRBERQQGEhKSvvSoy0VXr4T95jkfYi4/xbw7mLk7nt6xD\nGyGJiMSFAgjJq/b2durrp1JdXU1DQwNVVVXU109lzZo1Gf181dZbcytwJXO5iWPYk0dZxCS0EZKI\nSLwogJC86p6/EGxY1UhLy2ISiRmD//Cf/8zYI4/kwE035ahhW3ECB/MmrxH19tAiIrIxBRCSN93z\nF4JKkWOA6XR0XERzc1P/0xlr18Lxx8OXvgSTJmGPP867h00iLttDF9JQp35ERApNqzAkb/rbqyLY\nTjnIX9hoBOHuu+GrX4X2dvjDH+C44xhpVnb7R2S8TbmISExoBELypudeFd31kb+wbh1897twyCGw\nyy7w6KNBINFtH4vKykqmTJlS8sED5Dj1IyISAY1ASN5036uio8MJRh7upqJiNrW13fIXHn0UZsyA\nZcvgvPNgzhyoqIiy6ZHqmvoJgofp6aPT6ehwmptn0tbWVhZBlIgUF41ASF4lk43U1k6gz/yFjg44\n/3zYbz9whwcegNNOK+vgATKb+hERiRuNQEhe9bd1Ns88A0cdBYsWwXe+Az/9KWy+eejt2Wg/jRjq\na5vygJauikh8KYCQUKzfKtsdrr0WTjkFRo2CO++Egw8O/fXzmZQYdhCS8dSPiEiMaApDwrN6NRx9\ndJAcedRRQe5DAYIHyE9SYq5FsbIx4NSPiEgMaQRCgBA+Zd92W1DbYd06+OMf4Stfyf2aGco1KbHr\nXpxzzi+5777H0teZBCykpWUWicQMFiyYl9c29zv1IyISUwogylgqleLhhx/m0ksvZ9Giu9cfz6n+\nwDvvwNy5cMklcPjhcPXVsNNOG71umFMCQ6pHQd/THoVeGbF+6kdEJOY0hVGGug/NH3NMgkWLHiYv\n9QceegjGj4crroCLL4b583sED4WaEsiqHkU3Pac9rkkf1coIEZG+KIAoQxs6yvOBTuAysio93VtH\nB5xzDuy/P2y2GbS2wqmnwrCev16FKpbUlZRYUTEr/VrPMth+GhuX4Z6Qfia7IEREpFwogCgzPTvK\nT6aP5vApe+XKIDHy+98Plmfefz/ssccgr5tDsJKhbJMSN572qAIagMyDEBGRcqIciDLTs6N8J/31\nEOoPdC3PPPVUGD062NPioIMyfN3uBs5LGKpskxL7rsXQCHyOIAgJ1NY2aGWEiAgKIMrOxh1l16fs\nLOoPrF4NJ54It9wSLNG8+GLYeussX7dLuFMCmSYl9l+LYRUTJ07mzDPnamWEiEg3CiDKzMYd5bnA\ncWT8Kfv224Plme+8AzffDF/+8hBfN37FkpLJRhKJGTQ3b3wvtCOmiEhPyoEoQz3zA/YEHubAAydz\n0003kUqlWLBg3sYd5jvvwH/9V7A0c4894LHHMg4e+n7d+BVL6pr2SKVSNDU19X8vREREIxDlKOui\nRY88AtOnw/LlcOGFfa6wgMHrOxRLsSTVYhARGZwCiDI2aEfZ2Qm/+U2wwuITn4AHH4RPfWqj07Ld\nd0IdtIhI8dMUhvTt2Wfh0EPh9NNh9mxYsqTP4AEKV99BRETiIxYBhJmdbGYrzewdM1tsZvtF3aZS\nkUqlmD9/fnZ1Fm68EfbcM5iyuOMOOO+8oEBUP9cvZH0HERGJh8gDCDM7Bvg1cDawD/AI0GxmH4m0\nYUVuSGWjX3sNZsyARALq6oLdMw85ZMDXyaS+g4iIlJ7IAwhgDvA7d7/W3Z8GTgTeBr4ebbOKW9bT\nCgsXwl57wd//Do2NkExCBqsPhrrvRH+GNGIiIiIFF2kAYWabAOOBO7qOubsDLcDEqNpV7LKaVnjv\nPTjjjKAc9S67bFhxYZbRaw1l34m+FGqjLRERyY+oRyA+AlQAL/U6/hKwQ+GbUxoynlZ4+mmYOBF+\n9Sv4xS/g//4Pdt0169fLR30HJWKKiBSXuC7jNILayv2aM2cOI0aM6HEskUiQSCTCbFdRGLRs9Nix\ncPnlcNppwajD/fdDTc2QXy/X+g5dIyZB8NDV3ul0dDjNzTNpa2vTsk8RkSwlk0mSyWSPY2vXrs3b\n9S2YMYhGegrjbeBL7n5rt+N/AEa4+xf6+JkaoLW1tZWaHDq9UldfP5WWlsV0dFxE97LRXz5oH27c\nYjNoaoKTToLzz4cttoi0rfPnz6ehoYFg5GFMt2eeBXamqamJKVOmRNM4EZESsnTpUsaPHw8w3t2X\n5nKtSKcw3P19oBU4tOuYmVn6+/uialcp6Gta4aw9P84Njz8SFISaNw8uu6zf4KGQyYz5TsQUEZHw\nxWEK4zfANWbWCiwhWJWxBfCHKBtVzLpKSl9yyYXAhax8/HH2v+kmRtx0ExxxBFx5JWy3XZ8/m21V\nyXzIdKOtwUpli4hIAbl75A/gJOBfwDvAP4B9Bzi3BvDW1laXnlavXu11dQ1OkD/igJ864QD/YOxY\n9w99yP23v3Xv7BzwGnV1DV5RMdqh0WGVQ6NXVIz2urqGUNve3t6+Udvr6hq8vb29z/fV9ZyIiGSu\ntbW16+9ojefYd0eaAzEUyoHo34a8h4sZxmf5HqfzI25m5dYjqFpyP1RXD/jzqVSK6upqeiYzkv5+\nJqlUKvRP/n0lYnZ/X8HKkoVUVMyitnYCCxbMC7U9IiKlJJ85EHGYwpA86L6SYVcO4DpmMJF/cA6f\n58ev38qTw4YxWNefyfLPsAOI3httaYWGiEg8RV0HQvKkq/Ofycs8wl58lOeYzN38gEv5gMxKSscx\nmVGlskVE4kkBRImo3GYbbgSu5b/5C19gLx7hXg4km84/X1Ul8ymOQY2IiCiAKA133MG4L36RhuHD\nOda25HgO4w3WMpTOPx9VJfMpjkGNiIgogChu69YF1SRra6Gqio6HHuK1wyeTS+ffVVUylUrR1NRE\nKpViwYJ5/S7hLES9iLgFNSIioiTK4vX448GmV08/HexlMWcOI4cNy6mkdHe9kxl7K2S9iMFKZas+\nhIhI4SmAKFb33AMdHbBkSbANdzeDdf750HPzq2BpZUvLLBKJGaEtrez9vqIoeiUiIgFNYRSrb30L\nWls3Ch4KIavtwkOkHTxFRKKjAKJYmcFmm0Xy0nFYWhmXIEZEpFwpgJCsxWFpZRyCGBGRcqYAQrIW\nh6WVcQhiRETKmQIIGZKol1bGIYgRESlnWoUhQzLY0spCSCYbSSRm0Nw8c/2x2toG1YcQESkABRCS\nk0IsGe1PHIIYEZFypQBCil6UQYyISLlSDoSIiIhkTQGEiIiIZE0BhIiIiGRNAYSIiIhkTQGEiIiI\nZE0BhIiIiGRNAYSIiIhkTQGEiIiIZE0BhIiIiGRNAYSIiIhkTQGEiIiIZE0BhIiIiGQt0gDCzP5l\nZp3dHh1mdnqUbRIREZHBRb0bpwNnAVcAlj72RnTNERERkUxEHUAAvOnur0TdCBEREclcHHIgvmdm\nr5rZUjM7zcwqom6QiIiIDCzqEYiLgKVAO3AAcC6wA3BalI0SERGRgeU9gDCzc4C5A5ziwO7unnL3\nC7sdf9zM3gd+a2ZnuPv7+W6biIiI5EcYIxC/Aq4e5Jx/9nP8foI27Qq0DXSBOXPmMGLEiB7HEokE\niUQis1aKiIiUsGQySTKZ7HFs7dq1ebu+uXveLpYrM5sO/AH4iLv3+S7NrAZobW1tpaamppDNExER\nKWpLly5l/PjxAOPdfWku14osB8LMJgD7A/9HsHTzAOA3wHX9BQ8iIiISD1EmUa4DjgXOBjYDVgK/\nBi6IsE1FI5VKsWLFCsaNG0dlZWXUzRERkTITWQDh7g8BE6N6/WLV3t7OtGkzaW5uWn+srq6BZLKR\nUaNGRdgyEREpJ3GoAyFZmDZtJi0ti4FGYBXQSEvLYhKJGRG3TEREyknUdSAkC6lUKj3y0AhMTx+d\nTkeH09w8k7a2Nk1niIhIQWgEooisWLEi/dWkXs9MBmD58uUFbY+IiJQvBRBFZOzYsemvFvZ65m4A\nxo0bV9D2iIhI+VIAUUSqqqqoq2ugomIWwTTGs0AjFRWzqatr0PSFiIgUjAKIIpNMNlJbOwGYCewM\nzKS2dgI//emPmD9/Pm1tAxbwFBERyQsFEEVm1KhRLFgwj1QqRVNTE0uWLAHgM5/5DA0NDVRVVVFf\nP5U1a9ZE3FIRESllCiCKVGVlJVOmTOEHP/iRlnWKiEjBaRlnEdOyThERiYpGIIqYlnWKiEhUFEAU\nMS3rFBGRqCiAKGJa1ikiIlFRAFHk+lvWmUw29nl+KpXSck8REcmZkiiLXNeyzra2NpYvX97v9t7a\nxVNERPJJIxAlomtZZ3/TFtrFU0RE8kkjEGVAyz1FRCTfNAJRBrTcU0RE8k0BRBnQck8REck3BRBl\nQMs9RUQk3xRAlIlsl3uKiIgMREmUZSLT5Z4iIiKZUABRZiorKxU4iIhIzjSFISIiIllTACEiIiJZ\nUwAhIiIiWVMAISIiIllTACEiIiJZUwBRxJLJZNRNiA3di4Duwwa6FwHdh4DuQ/6FFkCY2Zlmdq+Z\nvWVm7f2cM8bM5qXPedHMzjMzBTUZ0v8QG+heBHQfNtC9COg+BHQf8i/MznoT4I/A//T1ZDpQaCKo\nRTEB+CpwPPCTENskIiIieRBaAOHuP3b3i4DH+jmlDvgEMN3dH3P3ZuAHwMlmpgJXIiIiMRbldMEE\n4DF3f7XbsWZgBPDJaJokIiIimYjyk/4OwEu9jr3U7blH+vm5zQGeeuqpkJpVPNauXcvSpUujbkYs\n6F4EdB820L0I6D4EdB8C3frOzXO9lrl75iebnQPMHeAUB3Z391S3n/kqcIG7j+51rd8BO7v7lG7H\nPgS8BdS7+239tGEacH3GjRYREZHeprv7DblcINsRiF8BVw9yzj8zvNaLwH69jm2f/m/vkYnumoHp\nwL+AdzN8LREREQlGHnYl6EtzklUA4e6rgdW5vmjaP4Azzewj3fIgDgfWAk8O0oacoiYREZEydl8+\nLhJaDoSZjQFGA7sAFWa2V/qp5e7+FnAbQaBwnZnNBXYEfgpc6u7vh9UuERERyV1WORBZXdjsauC4\nPp46xN0Xps8ZQ1An4mCC3Ic/AGe4e2cojRIREZG8CC2AEBERkdKlstEiIiKSNQUQIiIikrWiDSDM\nbBczu9LM/mlmb5tZm5n9yMw2ibpthWBmJ5vZSjN7x8wWm1nvJbElzczOMLMlZva6mb1kZn8xs6qo\n2xW19H3pNLPfRN2WKJjZTmZ2nZm9mv678IiZ1UTdrkIzs2Fm9tNufx+Xm9lZUbcrbGZ2kJndambP\npf8/+Hwf5/zEzJ5P35fbzWxcFG0N20D3wsyGm9kvzexRM3szfc41ZrZjNq9RtAEEwT4aBpwA7AHM\nAU4Efh5lowrBzI4Bfg2cDexDULWz2cw+EmnDCusg4BJgf6CWYPO229LFyMpSOog8gf6ruJY0MxsJ\n3AusI9hrZ3fgO8CaKNsVke8B3wJOIvhbeTpwupmdEmmrwrcl8DBwMkFhwx7SK/5OIbg3nyFI3m82\ns00L2cgCGehebAHsDfyYoA/5AlAN/C2bFyipJEozOw040d1LMqLsYmaLgfvdfXb6ewOeBS529/Mi\nbVxE0sHTy8Akd78n6vYUmpltBbQC3ybYlO4hd//vaFtVWGZ2LjDR3SdH3ZaomdnfgRfd/YRux24B\n3nb3vlbHlRwz6wSOcvdbux17Hjjf3S9If781QeHCr7r7H6Npafj6uhd9nLMvcD+wi7v/O5PrFvMI\nRF9GAu1RNyJM6Sma8cAdXcc8iAJbgIlRtSsGRhJE2SX97z+Ay4C/u/udUTckQkcAD5rZH9PTWkvN\n7BtRNyoi9wGHmlklQLoOz2eBpkhbFSEz+zjBPkvd/3a+TtBplvPfzi5df0Nfy/QHSmbb7PQ81ilA\nqX/q+ghQQd8bkVUXvjnRS4/AXAjc4+79VjEtVWZ2LMFw5L5RtyViuxGMwPyaYCpzf+BiM3vX3Rsj\nbVnhnQtsDTxtZh0EHxa/7+43RtusSO1A0EH29bdzh8I3Jz7MbDOC35kb3P3NTH8udgHEEDfs+igw\nH7jJ3a8KuYlxZfQx51cmLifIg/ls1A0pNDP7GEHwdJgquDIMWOLuP0h//4iZfZIgqCi3AOIYYBpw\nLEHF372Bi8zseXe/LtKWxU85/+3EzIYDNxPcg5Oy+dnYBRBkuWGXme0E3Enw6fNbYTYsJl4FOtiw\n8ViX7Rh4E7KSZGaXAg3AQe7+QtTticB4YFugNT0SA8EI1aR0wtxmXkqJTgN7AXiq17GngC9G0Jao\nnQf8wt1vTn//hJntCpwBlGsA8SJBsLA9Pf9Wbgc8FEmLItYteBgDfC6b0QeIYQCRzYZd6ZGHO4EH\ngK+H2a64cPf3zawVOBS4FdYP4R8KXBxl2wotHTwcCUx291VRtyciLcCnex37A0HHeW4ZBQ8QrMDo\nPY1XDTwTQVuitgUbf6rupPTy3jLm7ivN7EWCv5WPwvokyv0JcojKSrfgYTeCLSayXq0UuwAiU+n1\nqncRbOt9OrBd1wcwdy/1T+K/Aa5JBxJLCJawbkHQcZQFM7scSACfB94ys64RmbXuXjbbvKc3puuR\n92FmbwGr3b33p/FSdwFwr5mdAfyRoGP4BsHS1nLzd+D7ZvYs8ARQQ/B34spIWxUyM9sSGEcw0gCw\nWzqBtN3dnyWY7jvLzJYT9B0/Bf5NlssXi8FA9wJ4HvgTwdTWfwCbdPsb2p7pdGjRLuM0s68CvfMd\njGBRQkUETSooMzuJIHDanmCt76nu/mC0rSqc9LKkvn55v+bu1xa6PXFiZncCD5fbMk4AM2sgSAYb\nB6wEfl2OeVHpzuOnBOv7tyPoMG4AfuruH0TZtjCZ2WTg/9j4b8M17v719Dk/Ar5JsOpgEXCyuy8v\nZDsLYaB7QVD/YWWv57pyQdZveDnoaxRrACEiIiLRKdv5MBERERk6BRAiIiKSNQUQIiIikjUFECIi\nIpI1BRAiIiKSNQUQIiIikjUFECIiIpI1BRAiIiKSNQUQIiIikjUFECIiIpI1BRAiIiKStf8PHNmL\nkWwW4HwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10f38add8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"ax.scatter(Xt, yt)\n",
"ax.plot(Xtest, ytest, c='r')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# succès!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.