{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import salem\n", | |
"import matplotlib.pyplot as plt\n", | |
"import geopandas as gpd\n", | |
"import numpy as np\n", | |
"from subprocess import Popen\n", | |
"import os\n", | |
"from oggm import utils" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dem_full = 'Alaska_albers_V3.tif'" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Make a shapefile with the tiles in the original projection " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[-1826439.1592820566,\n", | |
" 2031800.8407179434,\n", | |
" -51.90425149630755,\n", | |
" 2664488.0957485037]" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ds = salem.GeoTiff(dem_full)\n", | |
"ds.grid.extent" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### We make a grid slightly larger so that we can properly divide it in nice boxes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[-1827000.0, 2073000.0, -35000.0, 2665000.0]" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"grid = salem.Grid(x0y0=(-1827000, 2665000), dxdy=(ds.grid.dx, ds.grid.dy), nxny=(130000, 90000), \n", | |
" proj=ds.grid.proj, pixel_ref='corner')\n", | |
"grid = grid.center_grid\n", | |
"grid.extent" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"10000" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"from math import gcd\n", | |
"gcd(grid.nx, grid.ny)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<salem.Grid>\n", | |
" proj: +datum=NAD83 +lat_0=50 +lat_1=55 +lat_2=65 +lon_0=-154 +no_defs+proj=aea +units=m +x_0=0 +y_0=0\n", | |
" pixel_ref: center\n", | |
" origin: upper-left\n", | |
" (nx, ny): (13, 9)\n", | |
" (dx, dy): (300000.0, -300000.0)\n", | |
" (x0, y0): (-1677000.0, 2515000.0)" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"lr_grid = grid.regrid(nx=grid.nx / 10000, ny=grid.ny / 10000)\n", | |
"lr_grid" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 50, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"117" | |
] | |
}, | |
"execution_count": 50, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"geom = lr_grid.to_geometry()\n", | |
"geom['tile'] = ['{:03d}_{:03d}'.format(i, j) for i, j in zip(geom.i, geom.j)]\n", | |
"len(geom)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### We keep only the tiles which are relevant to glaciers to save space " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"rgi = gpd.read_file('/home/mowglie/disk/Data/GIS/SHAPES/RGI/RGI_V6/01_rgi60_Alaska/01_rgi60_Alaska.shp')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"rgi = rgi.to_crs(geom.crs)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"rgi['geometry'] = rgi.buffer(50000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"rgi = rgi.dissolve(by='O1Region')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"rgi.to_file('/home/mowglie/rgibuf_diss.shp')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"geom = geom.loc[geom.geometry.intersects(rgi.unary_union)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAADmCAYAAAAQhGinAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEYFJREFUeJzt3X+s3fVdx/HnW+rmflPWu65S8IJWk0Iiwg2rcRoULaXVwKIuYCIdI6sKS9RoYpE/IMPEbsu2hDjZWGgoyzaGU4QI2HV1uBiFcbuxUjawF1ZCm9J2LQPjzJTt7R/nc8f3Xs6559z7Ob3fe9vnIzm53/v+fs738z7nfs599Zzv90JkJpIk1fixthuQJC1+hokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGpL2m5gvixbtixHR0fbbkOSFpVdu3Z9JzNH+o07acJkdHSU8fHxttuQpEUlIp4dZJwfc0mSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKnaSfN3JtJcjG6+v+0WFpV9Wza03YJa4jsTSVI1w0SSVM0wkSRVM0wkSdUME0lSNcNEklTNMJEkVTNMJEnVDBNJUjXDRJJUzTCRJFUzTCRJ1QwTSVI1w0SSVM0wkSRVM0wkSdUME0lSNcNEklTNMJEkVTNMJEnVDBNJUjXDRJJUzTCRJFUzTCRJ1QwTSVI1w0SSVK1vmETEGRHx5Yj4ZkQ8ERF/XOqnRcSOiNhbvi4t9YiIWyJiIiJ2R8T5jWNtLOP3RsTGRv2CiHi83OeWiIi5ziFJmn+DvDN5GfizzFwNrAGui4jVwGZgZ2auAnaW7wEuBVaV2ybgVugEA3Aj8A7gQuDGyXAoY97XuN+6Up/VHJKkdvQNk8w8mJlfK9v/BXwLOB24DNhWhm0DLi/blwF3ZsfDwKkRsQK4BNiRmccy8wVgB7Cu7HtzZj6cmQncOe1Ys5lDktSCWZ0ziYhR4BeAR4DlmXmw7HoeWF62Tweea9xtf6nNVN/fpc4c5pAktWDgMImINwJ/D/xJZr7U3FfeUeSQe5tiLnNExKaIGI+I8SNHjhynziRJA4VJRPw4nSD5TGb+QykfmvxoqXw9XOoHgDMad19ZajPVV3apz2WOKTLztswcy8yxkZGRQR6qJGkOBrmaK4DbgW9l5kcbu+4DJq/I2gjc26hfVa64WgO8WD6q2g6sjYil5cT7WmB72fdSRKwpc1017VizmUOS1IIlA4z5JeD3gccj4rFS+0tgC3B3RFwDPAu8u+x7AFgPTADfA64GyMxjEXEz8GgZ94HMPFa2rwXuAF4HPFhuzHYOSVI7+oZJZv4bED12X9xlfALX9TjWVmBrl/o4cG6X+tHZziFJmn/+BbwkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqpF538NcuIbGxvL8fHxttuQuhrdfH/bLSwq+7ZsaLuFk0ZE7MrMsX7jfGciSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqr1DZOI2BoRhyNiT6N2U0QciIjHym19Y9/1ETEREU9FxCWN+rpSm4iIzY36WRHxSKl/PiJeU+qvLd9PlP2j/eaQJLVjkHcmdwDrutQ/lpnnldsDABGxGrgCOKfc528j4pSIOAX4OHApsBq4sowF+GA51s8ALwDXlPo1wAul/rEyruccs3vYkqRh6hsmmfkV4NiAx7sMuCszv5+Z3wYmgAvLbSIzn8nM/wXuAi6LiAB+DfhCuf824PLGsbaV7S8AF5fxveaQJLWk5pzJ+yNid/kYbGmpnQ481xizv9R61d8KfDczX55Wn3Kssv/FMr7XsSRJLZlrmNwK/DRwHnAQ+MjQOhqiiNgUEeMRMX7kyJG225GkE9acwiQzD2XmDzLzh8CneOVjpgPAGY2hK0utV/0ocGpELJlWn3Kssv8tZXyvY3Xr87bMHMvMsZGRkbk8VEnSAJb0H/JqEbEiMw+Wb98FTF7pdR/w2Yj4KPCTwCrgq0AAqyLiLDq/+K8Afi8zMyK+DPwOnfMoG4F7G8faCPxH2f8vZXyvOXSSGd18f9stqCX+7Gdn35YNx32OvmESEZ8DLgKWRcR+4Ebgoog4D0hgH/AHAJn5RETcDXwTeBm4LjN/UI7zfmA7cAqwNTOfKFP8BXBXRPwV8HXg9lK/Hfh0REzQuQDgin5zSJLaEZnZdg/zYmxsLMfHx9tuQ0Pkv06lwdS8M4mIXZk51m+cfwEvSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqtY3TCJia0Qcjog9jdppEbEjIvaWr0tLPSLiloiYiIjdEXF+4z4by/i9EbGxUb8gIh4v97klImKuc0iS2jHIO5M7gHXTapuBnZm5CthZvge4FFhVbpuAW6ETDMCNwDuAC4EbJ8OhjHlf437r5jKHJKk9fcMkM78CHJtWvgzYVra3AZc36ndmx8PAqRGxArgE2JGZxzLzBWAHsK7se3NmPpyZCdw57VizmUOS1JK5njNZnpkHy/bzwPKyfTrwXGPc/lKbqb6/S30uc0iSWlJ9Ar68o8gh9DL0OSJiU0SMR8T4kSNHjkNnkiSYe5gcmvxoqXw9XOoHgDMa41aW2kz1lV3qc5njVTLztswcy8yxkZGRWT1ASdLg5hom9wGTV2RtBO5t1K8qV1ytAV4sH1VtB9ZGxNJy4n0tsL3seyki1pSruK6adqzZzCFJasmSfgMi4nPARcCyiNhP56qsLcDdEXEN8Czw7jL8AWA9MAF8D7gaIDOPRcTNwKNl3Acyc/Kk/rV0rhh7HfBguTHbOSRJ7ekbJpl5ZY9dF3cZm8B1PY6zFdjapT4OnNulfnS2c0iS2uFfwEuSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkan0vDZbmYnTz/W23oGn2bdnQdgtD4/paeHxnIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqZphIkqoZJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSapmmEiSqhkmkqRqhokkqZphIkmqtqTtBhaD0c33t92CWrJvy4a2W1AX/lwWnqp3JhGxLyIej4jHImK81E6LiB0Rsbd8XVrqERG3RMREROyOiPMbx9lYxu+NiI2N+gXl+BPlvjHTHJKkdgzjY65fzczzMnOsfL8Z2JmZq4Cd5XuAS4FV5bYJuBU6wQDcCLwDuBC4sREOtwLva9xvXZ85JEktOB7nTC4DtpXtbcDljfqd2fEwcGpErAAuAXZk5rHMfAHYAawr+96cmQ9nZgJ3TjtWtzkkSS2oDZMEvhgRuyJiU6ktz8yDZft5YHnZPh14rnHf/aU2U31/l/pMc0iSWlB7Av6dmXkgIt4G7IiIJ5s7MzMjIivnmNFMc5SA2wRw5plnHs82JOmkVvXOJDMPlK+HgXvonPM4VD6ionw9XIYfAM5o3H1lqc1UX9mlzgxzTO/vtswcy8yxkZGRuT5MSVIfcw6TiHhDRLxpchtYC+wB7gMmr8jaCNxbtu8DripXda0BXiwfVW0H1kbE0nLifS2wvex7KSLWlKu4rpp2rG5zSJJaUPMx13LgnnK17hLgs5n5zxHxKHB3RFwDPAu8u4x/AFgPTADfA64GyMxjEXEz8GgZ94HMPFa2rwXuAF4HPFhuAFt6zCFJasGcwyQznwF+vkv9KHBxl3oC1/U41lZga5f6OHDuoHNIktrhf05FklTNMJEkVTNMJEnVDBNJUjXDRJJUzTCRJFUzTCRJ1QwTSVI1w0SSVM0wkSRVM0wkSdUME0lSNcNEklTNMJEkVTNMJEnVav8f8CeFfVs2tN2CJC1ovjORJFUzTCRJ1QwTSVI1w0SSVM0wkSRVM0wkSdUME0lSNcNEklQtMrPtHuZFRBwB/hv4Ttu9DGAZ9jlsi6VX+xyuxdInLNxefyozR/oNOmnCBCAixjNzrO0++rHP4VssvdrncC2WPmFx9dqNH3NJkqoZJpKkaidbmNzWdgMDss/hWyy92udwLZY+YXH1+ion1TkTSdLxcbK9M5EkHQ+ZueBvwIeBJ4HdwD3AqY191wMTwFPAJY36ulKbADY36mcBj5T654HXlPpry/cTZf/obOcAfhd4AvghMNYYNwr8D/BYuX2ise8C4PFyjFt45d3iacAOYG/5urTUo4ybKM/H+Y1jbSzj9wIbZ5ija58L7fnssg5uAg40nsf1C6HvIa3xGR/7kOfaV9bDY8D4PKy3Gdf0tN62AoeBPY1aa731mqNHnyfs+hxoXc33hHNc/GuBJWX7g8AHy/Zq4BvlCT4LeBo4pdyeBs4GXlPGrC73uRu4omx/Avijsn0t5Zc8cAXw+TnM8ZvAzwEP8eow2dPjsX0VWFMW7YPApaX+ocnFRSeoJh/z+jIuyv0eabwYnilfl5btpT3m2NSjz4X2fK6e9lzdBPx5l+ewtb6HtL77PvYhv572Acum1Y7neptxTU/r41eA85n6S7q13maYo1ufJ+T6HHhdzedkQ3ohvAv4TNm+Hri+sW878Ivltr1Rv77cgs4fBU0G04/GTd63bC8p42K2c5TthxggTIAVwJON768EPlm2nwJWNMY9VbY/CVzZuM9TZf+P7tsc12eO6X0uyOdzgBdra30PaU33fexDfg3t49VhMh/rrescXfobZeov6dZ66zVHjz5PyPU56G0xnjN5L51/KQCcDjzX2Le/1HrV3wp8NzNfnlafcqyy/8UyfrZz9HJWRHw9Iv41In65Mef+HsdYnpkHy/bzwPI5PuaZ5phuMTyf74+I3RGxNSKWLoC+h+F4HrubBL4YEbsiYlOpzcd66zVHP232NtufzYm4PgeyYP4f8BHxJeDtXXbdkJn3ljE3AC8Dn5nP3qZZB/xG2X5jRKwp2ztmuM9B4MzMPBoRFwD/GBHnDDphZmZE5Cz7fA/weuAPgbdHxJ5Sb/O566uxDt4CvD4iLiq7bgBuBW6m88vwZuAjdP5xodl5Z2YeiIi3ATsi4snmzjmut1mZ6xwLuTdO8vW5YMIkM399pv0R8R465yQuzvI+js7JrjMaw1aWGj3qR4FTI2JJSfXm+Mlj7Y+IJXR+mR3tMsceOm9nAW7KzEtKf9fP8Ni+D3y/bO+KiKeBny3HXtmj/0MRsSIzD0bECjon+2Z6zAeAixr1L9H5GOsh4MuZeW7p80o6b8+7aeP5nDLH5DqYfD4z86+7NRoRnwL+aYH0Xet4HvtVMvNA+Xo4Iu4BLqR+va2ks9bmsqb7abO3gX82mXlocvsEW5+Dmc/P1OZ6o/Nu4JvAyLT6OUw96fQMnZNaS8r2WbxyYuuccp+/Y+qJrWvL9nVMPbF1d8UcDzH1XMQI5WQYnZNtB4DTyvfTTwiuL/UPM/WE4IfK9gamnhD8aqmfBnybzgnHpWW73xzT+1yQz2ejvxWN7T8F7mq77yGt776PfYivpTcAb2ps/zud19d8rLeuc3TpcZSp5yJa663XHD36PCHX58Braz4nq3gBTND5PLDbpbU30Lly4SnKlRmlvh74z7Lvhkb97LKgJsoP7LWl/hPl+4my/+zZzkHn4oD9dN6FHOKVk2a/TedS3MeArwG/1TjGGJ13O08Df8Mrlyq+FdhJ51LFLzVeDAF8vIx/nKlh8N7S/wRw9QxzdO1zoT2fXdbBp8tj3g3cx9QXb2t9D2mNz/jYhzjP2XR+6XyjrMkb5mG9zbimp/X3OTofC/9fWaPXtNlbrzl69HnCrs9Bbv4FvCSp2mK8mkuStMAYJpKkaoaJJKmaYSJJqmaYSJKqGSaSpGqGiSSpmmEiSar2/0FRSik1KH08AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"geom.plot();" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"geom.to_file('Alaska_albers_V3_tiles.shp')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Apply GDAL " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"37\n", | |
"005_001_Alaska_albers_V3\n", | |
"006_001_Alaska_albers_V3\n", | |
"007_001_Alaska_albers_V3\n", | |
"005_002_Alaska_albers_V3\n", | |
"006_002_Alaska_albers_V3\n", | |
"007_002_Alaska_albers_V3\n", | |
"006_003_Alaska_albers_V3\n", | |
"007_003_Alaska_albers_V3\n", | |
"008_003_Alaska_albers_V3\n", | |
"004_004_Alaska_albers_V3\n", | |
"005_004_Alaska_albers_V3\n", | |
"006_004_Alaska_albers_V3\n", | |
"007_004_Alaska_albers_V3\n", | |
"008_004_Alaska_albers_V3\n", | |
"009_004_Alaska_albers_V3\n", | |
"010_004_Alaska_albers_V3\n", | |
"011_004_Alaska_albers_V3\n", | |
"004_005_Alaska_albers_V3\n", | |
"005_005_Alaska_albers_V3\n", | |
"006_005_Alaska_albers_V3\n", | |
"007_005_Alaska_albers_V3\n", | |
"008_005_Alaska_albers_V3\n", | |
"009_005_Alaska_albers_V3\n", | |
"010_005_Alaska_albers_V3\n", | |
"011_005_Alaska_albers_V3\n", | |
"003_006_Alaska_albers_V3\n", | |
"004_006_Alaska_albers_V3\n", | |
"005_006_Alaska_albers_V3\n", | |
"006_006_Alaska_albers_V3\n", | |
"009_006_Alaska_albers_V3\n", | |
"010_006_Alaska_albers_V3\n", | |
"011_006_Alaska_albers_V3\n", | |
"000_007_Alaska_albers_V3\n", | |
"001_007_Alaska_albers_V3\n", | |
"002_007_Alaska_albers_V3\n", | |
"003_007_Alaska_albers_V3\n", | |
"004_007_Alaska_albers_V3\n" | |
] | |
} | |
], | |
"source": [ | |
"# read the REMA Tile Index\n", | |
"gdf = gpd.read_file('Alaska_albers_V3_tiles.shp') \n", | |
"print(len(gdf))\n", | |
"\n", | |
"full_dir = '/home/mowglie/disk/OGGM_INPUT/download_cache/cluster.klima.uni-bremen.de/'\n", | |
"full_dir += '~fmaussion/DEM/Alaska_albers_V3/'\n", | |
"utils.mkdir(full_dir, reset=True)\n", | |
"\n", | |
"for i in range(len(gdf)):\n", | |
" # seperate one tile from the tile index\n", | |
" tile = gdf.iloc[[i]] \n", | |
" \n", | |
" # create one directory for every tile\n", | |
" name = '{}_Alaska_albers_V3'.format(tile.iloc[0].tile)\n", | |
" print(name)\n", | |
" out_dir = os.path.join(full_dir, name)\n", | |
" utils.mkdir(out_dir, reset=True)\n", | |
" \n", | |
" # make and write one shapefile for every tile, necessary for gdalwarp\n", | |
" index_dir = os.path.join(out_dir, 'index')\n", | |
" shp_file = os.path.join(index_dir, name + '_index.shp')\n", | |
" utils.mkdir(index_dir)\n", | |
" tile.to_file(shp_file)\n", | |
" \n", | |
" # name of the GeoTiff tile\n", | |
" dem_tile = os.path.join(out_dir, name + '.tif')\n", | |
"\n", | |
" # Use gdalwarp -cutline as shell command to cut one tile at a time\n", | |
" command = 'gdalwarp -cutline {} -crop_to_cutline -of GTiff {} {}'.format(shp_file, dem_full, dem_tile)\n", | |
" p = Popen(command, shell=True)\n", | |
" p.wait()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"hide_input": false, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
}, | |
"latex_envs": { | |
"LaTeX_envs_menu_present": true, | |
"autoclose": false, | |
"autocomplete": true, | |
"bibliofile": "biblio.bib", | |
"cite_by": "apalike", | |
"current_citInitial": 1, | |
"eqLabelWithNumbers": true, | |
"eqNumInitial": 1, | |
"hotkeys": { | |
"equation": "Ctrl-E", | |
"itemize": "Ctrl-I" | |
}, | |
"labels_anchors": false, | |
"latex_user_defs": false, | |
"report_style_numbering": false, | |
"user_envs_cfg": false | |
}, | |
"nbTranslate": { | |
"displayLangs": [ | |
"*" | |
], | |
"hotkey": "alt-t", | |
"langInMainMenu": true, | |
"sourceLang": "en", | |
"targetLang": "fr", | |
"useGoogleTranslate": true | |
}, | |
"toc": { | |
"base_numbering": 1, | |
"nav_menu": {}, | |
"number_sections": false, | |
"sideBar": true, | |
"skip_h1_title": true, | |
"title_cell": "Table of Contents", | |
"title_sidebar": "Contents", | |
"toc_cell": false, | |
"toc_position": {}, | |
"toc_section_display": true, | |
"toc_window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment