Skip to content

Instantly share code, notes, and snippets.

Avatar
🤓
Did you do good today?

Mirosław Stanek frogermcs

🤓
Did you do good today?
View GitHub Profile
View MainActivity.java
public class MainActivity extends AppCompatActivity
implements ClassificationFrameProcessor.ClassificationListener {
private CameraView cameraView;
private TextView tvClassification;
private ClassificationFrameProcessor classificationFrameProcessor;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
View outputs
Output, CoreML
(CPU) Prediction for Golden Retriever: golden retriever 0.611853480339
(GPU) Prediction for laptop: notebook 0.515091240406
Output, TensorFlow
Prediction for Golden Retriever: golden retriever 0.61186796
Prediction for laptop: notebook 0.51475537
View predict_tf.py
TF_INPUT_TENSOR = 'input:0'
TF_OUTPUT_TENSOR = 'MobilenetV2/Predictions/Reshape_1:0'
with tf.Session(graph = g) as sess:
tf_laptop_out = sess.run(TF_OUTPUT_TENSOR, feed_dict={TF_INPUT_TENSOR: img_laptop_tf})
tf_golden_out = sess.run(TF_OUTPUT_TENSOR, feed_dict={TF_INPUT_TENSOR: img_golden_tf})
tf_laptop_out = tf_laptop_out.flatten()
tf_golden_out = tf_golden_out.flatten()
laptop_idx = np.argmax(tf_laptop_out)
golden_idx = np.argmax(tf_golden_out)
View load_tf.py
# Load TensorFlow frozen model
TF_FROZEN_MODEL = "mobilenet_v2_1.0_224_frozen.pb"
with open(TF_FROZEN_MODEL, 'rb') as f:
serialized_model = f.read()
tf.reset_default_graph()
graph_definition = tf.GraphDef()
graph_definition.ParseFromString(serialized_model)
with tf.Graph().as_default() as g:
tf.import_graph_def(graph_definition, name='')
View preprocess_to_tf.py
# Prepare images for TensorFlow requirements
#Convert to expected type: float
img_laptop_tf = np.array(img_laptop).astype(np.float32)
# Setup expected input shape: [1,224,224,3]
img_laptop_tf = np.expand_dims(img_laptop_tf, axis = 0)
# Convert to expected values ranges: [0, 1]
img_laptop_tf = (1.0/255.0) * img_laptop_tf
print( 'Image shape:', img_laptop_tf.shape)
View load_labels.py
LABELS_FILE = 'ImageNetLabels.txt'
with open(LABELS_FILE) as f:
labels = f.read().splitlines()
View coreml_prediction_output
Prediction for Golden Retriever: golden retriever 0.5627079010009766
Prediction for laptop: laptop 0.42153415083885193
View coreml_prediction.py
INPUT_TENSOR = "input__0"
OUTPUT_TENSOR = "MobilenetV2__Predictions__Reshape_1__0"
PREDICTED_FEATURE_NAME = "classLabel"
# Prediction is run on CPU
coreml_output_golden = mlmodel.predict({INPUT_TENSOR: img_golden}, useCPUOnly=True)
#Prediction is run on GPU
coreml_output_laptop = mlmodel.predict({INPUT_TENSOR: img_laptop}, useCPUOnly=False)
View preprocess.py
img_golden = img_golden.resize([224,224], PIL.Image.ANTIALIAS)
img_laptop = img_laptop.resize([224,224], PIL.Image.ANTIALIAS)
View coreml_model.py
# Load previously saved CoreML model of MobileNet v2
mlmodel = coremltools.models.MLModel('mobilenet_v2_1.0_224.mlmodel')
# Get spec from the model
spec = mlmodel.get_spec()
print(spec.description)
# Output
# >> input {
# >> name: "input__0"
You can’t perform that action at this time.