Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
#!/usr/bin/env python3
# Process raw CSV data and output Parquet
# Author: Gary A. Stafford (November 2020)
import os
import boto3
from ec2_metadata import ec2_metadata
from pyspark.sql import SparkSession
os.environ['AWS_DEFAULT_REGION'] = ec2_metadata.region
ssm_client = boto3.client('ssm')
def main():
params = get_parameters()
spark = SparkSession \
.builder \
.appName("bakery-csv-to-parquet") \
convert_to_parquet(spark, "bakery", params)
def convert_to_parquet(spark, file, params):
df_bakery = \
.format("csv") \
.option("header", "true") \
.option("delimiter", ",") \
.option("inferSchema", "true") \
write_parquet(df_bakery, params)
def write_parquet(df_bakery, params):
df_bakery.write \
.format("parquet") \
.save(f"s3a://{params['silver_bucket']}/bakery/", mode="overwrite")
def get_parameters():
params = {
'bronze_bucket': ssm_client.get_parameter(Name='/emr_demo/bronze_bucket')['Parameter']['Value'],
'silver_bucket': ssm_client.get_parameter(Name='/emr_demo/silver_bucket')['Parameter']['Value']
return params
if __name__ == "__main__":
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment