Created
May 31, 2024 03:14
-
-
Save gschoeni/2c48b403c8825253502a4a201946bc8a to your computer and use it in GitHub Desktop.
Mini Neural Network
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset, DataLoader | |
import pandas as pd | |
from io import StringIO | |
from sklearn.preprocessing import LabelEncoder | |
# Define a dataset class | |
class CustomDataset(Dataset): | |
def __init__(self, features, labels): | |
self.features = features | |
self.labels = labels | |
def __len__(self): | |
return len(self.features) | |
def __getitem__(self, idx): | |
return self.features[idx], self.labels[idx] | |
# Load and preprocess data | |
data = """ | |
is_fluffy,can_eat_you,can_fly,has_talons,class | |
1,0,0,0,dog | |
0,0,1,1,eagle | |
1,1,0,0,lion | |
0,0,1,0,plane | |
1,1,1,1,griffin | |
""" | |
df = pd.read_csv(StringIO(data)) | |
features = df.drop('class', axis=1).values | |
labels = LabelEncoder().fit_transform(df['class']) | |
# Creating dataloaders | |
dataset = CustomDataset( | |
torch.tensor(features, dtype=torch.float32), | |
torch.tensor(labels, dtype=torch.long) | |
) | |
data_loader = DataLoader(dataset, batch_size=1, shuffle=True) | |
# Neural Network | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.fc1 = nn.Linear(4, 2) | |
self.fc2 = nn.Linear(2, 5) | |
def forward(self, x): | |
x = torch.relu(self.fc1(x)) | |
print("fc1 output: ", x) | |
x = self.fc2(x) | |
return x | |
# Initialize the network, loss function, and optimizer | |
model = Net() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) | |
# Training the model | |
def train(model, data_loader, criterion, optimizer, epochs=100): | |
model.train() | |
for epoch in range(epochs): | |
total_loss = 0 | |
for data, target in data_loader: | |
optimizer.zero_grad() | |
output = model(data) | |
loss = criterion(output, target) | |
loss.backward() | |
optimizer.step() | |
total_loss += loss.item() | |
print(f'Epoch {epoch+1}, Loss: {total_loss/len(data_loader)}') | |
# Run training | |
train(model, data_loader, criterion, optimizer) | |
# Run each data point through the network and print the output | |
for data, target in data_loader: | |
print("data: ", data) | |
print("target: ", target) | |
print("output: ", model(data)) | |
print("-"*80) | |
# print model weights | |
print("fc1 weight: ", model.fc1.weight) | |
print("fc1 bias: ", model.fc1.bias) | |
print("fc2 weight: ", model.fc2.weight) | |
print("fc2 bias: ", model.fc2.bias) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment