Skip to content

Instantly share code, notes, and snippets.

# Plot histogram
(def d (read-dataset "/Users/mikaelhuss/Desktop/SAGE-liver-CVD/deliver_clinical_traits.txt" :header true :delim \tab))
(view (histogram (filter number? (sel d :cols 5))))
# Or the same with with-data
(with-data
(read-dataset "/Users/mikaelhuss/Desktop/SAGE-liver-CVD/deliver_clinical_traits.txt" :header true :delim \tab)
(view (histogram (filter number? ($ 5 )))))
import sys
for line in open(sys.argv[1]):
if 'layer' in line:
fname = '_'.join(line.strip().split()) + '_activities.txt'
outf = open(fname,'w')
else:
outf.write(line)
import sys
f = open(sys.argv[1])
wts = [] # This will be a list of list of lists (=list of matrices) with weights
bias_in = [] # List of lists of bias values in the input part of each sublayer
bias_out = [] # List of lists of bias values in the output part of each sublayer
prefs = [] # Prefixes for file names
state = None # state can be None, 'weight', 'bias_in' or 'bias_out'
@hussius
hussius / merge_kallisto_TPM.R
Last active November 17, 2016 09:38
R script for merging Kallisto TPMs from output directories below path given as command-line argument
args = commandArgs(trailingOnly=TRUE)
path=args[1]
files=Sys.glob(paste0(path,"/*/abundance.tsv"))
#print(files)
merge_two <- function(x,y){
#print(dim(x))
if ("tpm" %in% colnames(x)){
x_ <- x[,c(1,5)]
}
else{
@hussius
hussius / sum_by_gene.py
Created November 17, 2016 09:39
Sum transcript TPMs by gene using the FASTA file used for a Kallisto index
import sys
import gzip
if len(sys.argv)<3:
sys.exit("python sum_per_gene.py <cDNA FASTA file> <TPM table>")
ensg = {}
mapf = gzip.open(sys.argv[1])
ctr = 0
library(tensorflow)
tf$reset_default_graph()
x_data <- runif(100, min=0, max=1)
y_data <- x_data * 0.1 + 0.3 + rnorm(n, mean=0, sd=0.025)
W <- tf$Variable(tf$random_uniform(shape(1L), -1.0, 1.0))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- W * x_data + b
@hussius
hussius / sleuth_commands.R
Created September 14, 2015 07:52
Sleuth commands
# Installation (only needs to be done once)
source("http://bioconductor.org/biocLite.R")
biocLite("rhdf5")
install.packages("devtools")
devtools::install_github("pachterlab/sleuth")
# Now load the package
library("sleuth")
# A function (borrowed from the Sleuth documentation) for connecting Ensembl transcript names to common gene names
@hussius
hussius / decode_cossmo_example.py
Created April 26, 2018 11:02 — forked from hannes-brt/decode_cossmo_example.py
Function to decode a COSSMO training example in tfrecord format
def read_single_cossmo_example(serialized_example, n_tissues=1, coord_sys='rna1'):
"""Decode a single COSSMO example
coord_sys must be one of 'rna1' or 'dna0', if 'dna0' then an extra 'strand' field
must exist in the tfrecord and is extracted.
"""
assert coord_sys in ['dna0', 'rna1']
context_features = {
@hussius
hussius / preprocess_yeast_dna.py
Created June 14, 2018 12:17
Preprocess yeast DNA csv file from Genome Research paper
from pathlib import Path
import os
import sys
from fire import Fire
import numpy as np
import pandas as pd
from tqdm import tqdm
1. Install appropriate version of the Tensorflow (Python) framework from https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html
In my case (Mac OS X 10.11), I did:
- Get the .whl file (this is more likely to work than a direct pip install)
wget https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.11.0-py3-none-any.whl
- Install using non-Anaconda pip
/usr/local/bin/pip3 install tensorflow-0.11.0-py3-none-any.whl_