Skip to content

Embed URL

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
(Incomplete) Matlab interface generated from https://github.com/jaeandersson/swig/tree/matlab
classdef Circle < Shape
methods
function self = Circle(varargin)
self@Shape('_swigCreate',uint64(0),false);
if nargin==3 && ischar(varargin{1}) && strcmp(varargin{1},'_swigCreate')
self.swigCPtr = varargin{2};
self.swigOwn = varargin{3};
else
% How to get working on C side? Commented out, replaed by hack below
%self.swigCPtr = example_wrap('new_Circle',varargin{:});
%self.swigOwn = true;
tmp = example_wrap('new_Circle',varargin{:}); % FIXME
self.swigCPtr = tmp.swigCPtr;
self.swigOwn = tmp.swigOwn;
tmp.swigOwn = false;
end
end
function varargout = area(self,varargin)
[varargout{1:nargout}] = example_wrap('Circle_area',self,varargin{:});
end
function varargout = foo(self,varargin)
[varargout{1:nargout}] = example_wrap('Circle_foo',self,varargin{:});
end
function varargout = perimeter(self,varargin)
[varargout{1:nargout}] = example_wrap('Circle_perimeter',self,varargin{:});
end
function delete(self)
if self.swigOwn
example_wrap('delete_Circle',self);
end
end
end
end
#include "example.h"
#define M_PI 3.14159265358979323846
/* Move the shape to a new location */
void Shape::move(double dx, double dy) {
x += dx;
y += dy;
}
int Shape::nshapes = 0;
double Circle::area(void) {
return M_PI*radius*radius;
}
double Circle::perimeter(void) {
return 2*M_PI*radius;
}
double Square::area(void) {
return width*width;
}
double Square::perimeter(void) {
return 4*width;
}
class Shape {
public:
Shape() {
nshapes++;
}
virtual ~Shape() {
nshapes--;
}
double x, y;
void move(double dx, double dy);
virtual double area() = 0;
virtual double perimeter() = 0;
static int nshapes;
};
class Circle : public Shape {
private:
double radius;
public:
Circle(double r) : radius(r) { }
virtual double area();
// Test overloading
virtual double foo(int d){ return area();}
virtual double foo(){ return perimeter();}
virtual double perimeter();
};
class Square : public Shape {
private:
double width;
public:
Square(double w) : width(w) { }
virtual double area();
virtual double perimeter();
};
%module swigexample
%{
#include "example.h"
%}
/* Let's just grab the original header file here */
%include "example.h"
/* ----------------------------------------------------------------------------
* This file was automatically generated by SWIG (http://www.swig.org).
* Version 3.0.1
*
* This file is not intended to be easily readable and contains a number of
* coding conventions designed to improve portability and efficiency. Do not make
* changes to this file unless you know what you are doing--modify the SWIG
* interface file instead.
* ----------------------------------------------------------------------------- */
#define SWIGMATLAB
#define SWIG_name_d "swigexample"
#define SWIG_name swigexample
#define SWIG_global_name "cvar"
#define SWIG_op_prefix "op_"
#ifdef __cplusplus
/* SwigValueWrapper is described in swig.swg */
template<typename T> class SwigValueWrapper {
struct SwigMovePointer {
T *ptr;
SwigMovePointer(T *p) : ptr(p) { }
~SwigMovePointer() { delete ptr; }
SwigMovePointer& operator=(SwigMovePointer& rhs) { T* oldptr = ptr; ptr = 0; delete oldptr; ptr = rhs.ptr; rhs.ptr = 0; return *this; }
} pointer;
SwigValueWrapper& operator=(const SwigValueWrapper<T>& rhs);
SwigValueWrapper(const SwigValueWrapper<T>& rhs);
public:
SwigValueWrapper() : pointer(0) { }
SwigValueWrapper& operator=(const T& t) { SwigMovePointer tmp(new T(t)); pointer = tmp; return *this; }
operator T&() const { return *pointer.ptr; }
T *operator&() { return pointer.ptr; }
};
template <typename T> T SwigValueInit() {
return T();
}
#endif
/* -----------------------------------------------------------------------------
* This section contains generic SWIG labels for method/variable
* declarations/attributes, and other compiler dependent labels.
* ----------------------------------------------------------------------------- */
/* template workaround for compilers that cannot correctly implement the C++ standard */
#ifndef SWIGTEMPLATEDISAMBIGUATOR
# if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x560)
# define SWIGTEMPLATEDISAMBIGUATOR template
# elif defined(__HP_aCC)
/* Needed even with `aCC -AA' when `aCC -V' reports HP ANSI C++ B3910B A.03.55 */
/* If we find a maximum version that requires this, the test would be __HP_aCC <= 35500 for A.03.55 */
# define SWIGTEMPLATEDISAMBIGUATOR template
# else
# define SWIGTEMPLATEDISAMBIGUATOR
# endif
#endif
/* inline attribute */
#ifndef SWIGINLINE
# if defined(__cplusplus) || (defined(__GNUC__) && !defined(__STRICT_ANSI__))
# define SWIGINLINE inline
# else
# define SWIGINLINE
# endif
#endif
/* attribute recognised by some compilers to avoid 'unused' warnings */
#ifndef SWIGUNUSED
# if defined(__GNUC__)
# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
# define SWIGUNUSED __attribute__ ((__unused__))
# else
# define SWIGUNUSED
# endif
# elif defined(__ICC)
# define SWIGUNUSED __attribute__ ((__unused__))
# else
# define SWIGUNUSED
# endif
#endif
#ifndef SWIG_MSC_UNSUPPRESS_4505
# if defined(_MSC_VER)
# pragma warning(disable : 4505) /* unreferenced local function has been removed */
# endif
#endif
#ifndef SWIGUNUSEDPARM
# ifdef __cplusplus
# define SWIGUNUSEDPARM(p)
# else
# define SWIGUNUSEDPARM(p) p SWIGUNUSED
# endif
#endif
/* internal SWIG method */
#ifndef SWIGINTERN
# define SWIGINTERN static SWIGUNUSED
#endif
/* internal inline SWIG method */
#ifndef SWIGINTERNINLINE
# define SWIGINTERNINLINE SWIGINTERN SWIGINLINE
#endif
/* exporting methods */
#if (__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
# ifndef GCC_HASCLASSVISIBILITY
# define GCC_HASCLASSVISIBILITY
# endif
#endif
#ifndef SWIGEXPORT
# if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
# if defined(STATIC_LINKED)
# define SWIGEXPORT
# else
# define SWIGEXPORT __declspec(dllexport)
# endif
# else
# if defined(__GNUC__) && defined(GCC_HASCLASSVISIBILITY)
# define SWIGEXPORT __attribute__ ((visibility("default")))
# else
# define SWIGEXPORT
# endif
# endif
#endif
/* calling conventions for Windows */
#ifndef SWIGSTDCALL
# if defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__)
# define SWIGSTDCALL __stdcall
# else
# define SWIGSTDCALL
# endif
#endif
/* Deal with Microsoft's attempt at deprecating C standard runtime functions */
#if !defined(SWIG_NO_CRT_SECURE_NO_DEPRECATE) && defined(_MSC_VER) && !defined(_CRT_SECURE_NO_DEPRECATE)
# define _CRT_SECURE_NO_DEPRECATE
#endif
/* Deal with Microsoft's attempt at deprecating methods in the standard C++ library */
#if !defined(SWIG_NO_SCL_SECURE_NO_DEPRECATE) && defined(_MSC_VER) && !defined(_SCL_SECURE_NO_DEPRECATE)
# define _SCL_SECURE_NO_DEPRECATE
#endif
#include <cstdlib>
#include <iostream>
#include <mex.h>
#include <math.h>
/* -----------------------------------------------------------------------------
* swigrun.swg
*
* This file contains generic C API SWIG runtime support for pointer
* type checking.
* ----------------------------------------------------------------------------- */
/* This should only be incremented when either the layout of swig_type_info changes,
or for whatever reason, the runtime changes incompatibly */
#define SWIG_RUNTIME_VERSION "4"
/* define SWIG_TYPE_TABLE_NAME as "SWIG_TYPE_TABLE" */
#ifdef SWIG_TYPE_TABLE
# define SWIG_QUOTE_STRING(x) #x
# define SWIG_EXPAND_AND_QUOTE_STRING(x) SWIG_QUOTE_STRING(x)
# define SWIG_TYPE_TABLE_NAME SWIG_EXPAND_AND_QUOTE_STRING(SWIG_TYPE_TABLE)
#else
# define SWIG_TYPE_TABLE_NAME
#endif
/*
You can use the SWIGRUNTIME and SWIGRUNTIMEINLINE macros for
creating a static or dynamic library from the SWIG runtime code.
In 99.9% of the cases, SWIG just needs to declare them as 'static'.
But only do this if strictly necessary, ie, if you have problems
with your compiler or suchlike.
*/
#ifndef SWIGRUNTIME
# define SWIGRUNTIME SWIGINTERN
#endif
#ifndef SWIGRUNTIMEINLINE
# define SWIGRUNTIMEINLINE SWIGRUNTIME SWIGINLINE
#endif
/* Generic buffer size */
#ifndef SWIG_BUFFER_SIZE
# define SWIG_BUFFER_SIZE 1024
#endif
/* Flags for pointer conversions */
#define SWIG_POINTER_DISOWN 0x1
#define SWIG_CAST_NEW_MEMORY 0x2
/* Flags for new pointer objects */
#define SWIG_POINTER_OWN 0x1
/*
Flags/methods for returning states.
The SWIG conversion methods, as ConvertPtr, return an integer
that tells if the conversion was successful or not. And if not,
an error code can be returned (see swigerrors.swg for the codes).
Use the following macros/flags to set or process the returning
states.
In old versions of SWIG, code such as the following was usually written:
if (SWIG_ConvertPtr(obj,vptr,ty.flags) != -1) {
// success code
} else {
//fail code
}
Now you can be more explicit:
int res = SWIG_ConvertPtr(obj,vptr,ty.flags);
if (SWIG_IsOK(res)) {
// success code
} else {
// fail code
}
which is the same really, but now you can also do
Type *ptr;
int res = SWIG_ConvertPtr(obj,(void **)(&ptr),ty.flags);
if (SWIG_IsOK(res)) {
// success code
if (SWIG_IsNewObj(res) {
...
delete *ptr;
} else {
...
}
} else {
// fail code
}
I.e., now SWIG_ConvertPtr can return new objects and you can
identify the case and take care of the deallocation. Of course that
also requires SWIG_ConvertPtr to return new result values, such as
int SWIG_ConvertPtr(obj, ptr,...) {
if (<obj is ok>) {
if (<need new object>) {
*ptr = <ptr to new allocated object>;
return SWIG_NEWOBJ;
} else {
*ptr = <ptr to old object>;
return SWIG_OLDOBJ;
}
} else {
return SWIG_BADOBJ;
}
}
Of course, returning the plain '0(success)/-1(fail)' still works, but you can be
more explicit by returning SWIG_BADOBJ, SWIG_ERROR or any of the
SWIG errors code.
Finally, if the SWIG_CASTRANK_MODE is enabled, the result code
allows to return the 'cast rank', for example, if you have this
int food(double)
int fooi(int);
and you call
food(1) // cast rank '1' (1 -> 1.0)
fooi(1) // cast rank '0'
just use the SWIG_AddCast()/SWIG_CheckState()
*/
#define SWIG_OK (0)
#define SWIG_ERROR (-1)
#define SWIG_IsOK(r) (r >= 0)
#define SWIG_ArgError(r) ((r != SWIG_ERROR) ? r : SWIG_TypeError)
/* The CastRankLimit says how many bits are used for the cast rank */
#define SWIG_CASTRANKLIMIT (1 << 8)
/* The NewMask denotes the object was created (using new/malloc) */
#define SWIG_NEWOBJMASK (SWIG_CASTRANKLIMIT << 1)
/* The TmpMask is for in/out typemaps that use temporal objects */
#define SWIG_TMPOBJMASK (SWIG_NEWOBJMASK << 1)
/* Simple returning values */
#define SWIG_BADOBJ (SWIG_ERROR)
#define SWIG_OLDOBJ (SWIG_OK)
#define SWIG_NEWOBJ (SWIG_OK | SWIG_NEWOBJMASK)
#define SWIG_TMPOBJ (SWIG_OK | SWIG_TMPOBJMASK)
/* Check, add and del mask methods */
#define SWIG_AddNewMask(r) (SWIG_IsOK(r) ? (r | SWIG_NEWOBJMASK) : r)
#define SWIG_DelNewMask(r) (SWIG_IsOK(r) ? (r & ~SWIG_NEWOBJMASK) : r)
#define SWIG_IsNewObj(r) (SWIG_IsOK(r) && (r & SWIG_NEWOBJMASK))
#define SWIG_AddTmpMask(r) (SWIG_IsOK(r) ? (r | SWIG_TMPOBJMASK) : r)
#define SWIG_DelTmpMask(r) (SWIG_IsOK(r) ? (r & ~SWIG_TMPOBJMASK) : r)
#define SWIG_IsTmpObj(r) (SWIG_IsOK(r) && (r & SWIG_TMPOBJMASK))
/* Cast-Rank Mode */
#if defined(SWIG_CASTRANK_MODE)
# ifndef SWIG_TypeRank
# define SWIG_TypeRank unsigned long
# endif
# ifndef SWIG_MAXCASTRANK /* Default cast allowed */
# define SWIG_MAXCASTRANK (2)
# endif
# define SWIG_CASTRANKMASK ((SWIG_CASTRANKLIMIT) -1)
# define SWIG_CastRank(r) (r & SWIG_CASTRANKMASK)
SWIGINTERNINLINE int SWIG_AddCast(int r) {
return SWIG_IsOK(r) ? ((SWIG_CastRank(r) < SWIG_MAXCASTRANK) ? (r + 1) : SWIG_ERROR) : r;
}
SWIGINTERNINLINE int SWIG_CheckState(int r) {
return SWIG_IsOK(r) ? SWIG_CastRank(r) + 1 : 0;
}
#else /* no cast-rank mode */
# define SWIG_AddCast(r) (r)
# define SWIG_CheckState(r) (SWIG_IsOK(r) ? 1 : 0)
#endif
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef void *(*swig_converter_func)(void *, int *);
typedef struct swig_type_info *(*swig_dycast_func)(void **);
/* Structure to store information on one type */
typedef struct swig_type_info {
const char *name; /* mangled name of this type */
const char *str; /* human readable name of this type */
swig_dycast_func dcast; /* dynamic cast function down a hierarchy */
struct swig_cast_info *cast; /* linked list of types that can cast into this type */
void *clientdata; /* language specific type data */
int owndata; /* flag if the structure owns the clientdata */
} swig_type_info;
/* Structure to store a type and conversion function used for casting */
typedef struct swig_cast_info {
swig_type_info *type; /* pointer to type that is equivalent to this type */
swig_converter_func converter; /* function to cast the void pointers */
struct swig_cast_info *next; /* pointer to next cast in linked list */
struct swig_cast_info *prev; /* pointer to the previous cast */
} swig_cast_info;
/* Structure used to store module information
* Each module generates one structure like this, and the runtime collects
* all of these structures and stores them in a circularly linked list.*/
typedef struct swig_module_info {
swig_type_info **types; /* Array of pointers to swig_type_info structures that are in this module */
size_t size; /* Number of types in this module */
struct swig_module_info *next; /* Pointer to next element in circularly linked list */
swig_type_info **type_initial; /* Array of initially generated type structures */
swig_cast_info **cast_initial; /* Array of initially generated casting structures */
void *clientdata; /* Language specific module data */
} swig_module_info;
/*
Compare two type names skipping the space characters, therefore
"char*" == "char *" and "Class<int>" == "Class<int >", etc.
Return 0 when the two name types are equivalent, as in
strncmp, but skipping ' '.
*/
SWIGRUNTIME int
SWIG_TypeNameComp(const char *f1, const char *l1,
const char *f2, const char *l2) {
for (;(f1 != l1) && (f2 != l2); ++f1, ++f2) {
while ((*f1 == ' ') && (f1 != l1)) ++f1;
while ((*f2 == ' ') && (f2 != l2)) ++f2;
if (*f1 != *f2) return (*f1 > *f2) ? 1 : -1;
}
return (int)((l1 - f1) - (l2 - f2));
}
/*
Check type equivalence in a name list like <name1>|<name2>|...
Return 0 if equal, -1 if nb < tb, 1 if nb > tb
*/
SWIGRUNTIME int
SWIG_TypeCmp(const char *nb, const char *tb) {
int equiv = 1;
const char* te = tb + strlen(tb);
const char* ne = nb;
while (equiv != 0 && *ne) {
for (nb = ne; *ne; ++ne) {
if (*ne == '|') break;
}
equiv = SWIG_TypeNameComp(nb, ne, tb, te);
if (*ne) ++ne;
}
return equiv;
}
/*
Check type equivalence in a name list like <name1>|<name2>|...
Return 0 if not equal, 1 if equal
*/
SWIGRUNTIME int
SWIG_TypeEquiv(const char *nb, const char *tb) {
return SWIG_TypeCmp(nb, tb) == 0 ? 1 : 0;
}
/*
Check the typename
*/
SWIGRUNTIME swig_cast_info *
SWIG_TypeCheck(const char *c, swig_type_info *ty) {
if (ty) {
swig_cast_info *iter = ty->cast;
while (iter) {
if (strcmp(iter->type->name, c) == 0) {
if (iter == ty->cast)
return iter;
/* Move iter to the top of the linked list */
iter->prev->next = iter->next;
if (iter->next)
iter->next->prev = iter->prev;
iter->next = ty->cast;
iter->prev = 0;
if (ty->cast) ty->cast->prev = iter;
ty->cast = iter;
return iter;
}
iter = iter->next;
}
}
return 0;
}
/*
Identical to SWIG_TypeCheck, except strcmp is replaced with a pointer comparison
*/
SWIGRUNTIME swig_cast_info *
SWIG_TypeCheckStruct(swig_type_info *from, swig_type_info *ty) {
if (ty) {
swig_cast_info *iter = ty->cast;
while (iter) {
if (iter->type == from) {
if (iter == ty->cast)
return iter;
/* Move iter to the top of the linked list */
iter->prev->next = iter->next;
if (iter->next)
iter->next->prev = iter->prev;
iter->next = ty->cast;
iter->prev = 0;
if (ty->cast) ty->cast->prev = iter;
ty->cast = iter;
return iter;
}
iter = iter->next;
}
}
return 0;
}
/*
Cast a pointer up an inheritance hierarchy
*/
SWIGRUNTIMEINLINE void *
SWIG_TypeCast(swig_cast_info *ty, void *ptr, int *newmemory) {
return ((!ty) || (!ty->converter)) ? ptr : (*ty->converter)(ptr, newmemory);
}
/*
Dynamic pointer casting. Down an inheritance hierarchy
*/
SWIGRUNTIME swig_type_info *
SWIG_TypeDynamicCast(swig_type_info *ty, void **ptr) {
swig_type_info *lastty = ty;
if (!ty || !ty->dcast) return ty;
while (ty && (ty->dcast)) {
ty = (*ty->dcast)(ptr);
if (ty) lastty = ty;
}
return lastty;
}
/*
Return the name associated with this type
*/
SWIGRUNTIMEINLINE const char *
SWIG_TypeName(const swig_type_info *ty) {
return ty->name;
}
/*
Return the pretty name associated with this type,
that is an unmangled type name in a form presentable to the user.
*/
SWIGRUNTIME const char *
SWIG_TypePrettyName(const swig_type_info *type) {
/* The "str" field contains the equivalent pretty names of the
type, separated by vertical-bar characters. We choose
to print the last name, as it is often (?) the most
specific. */
if (!type) return NULL;
if (type->str != NULL) {
const char *last_name = type->str;
const char *s;
for (s = type->str; *s; s++)
if (*s == '|') last_name = s+1;
return last_name;
}
else
return type->name;
}
/*
Set the clientdata field for a type
*/
SWIGRUNTIME void
SWIG_TypeClientData(swig_type_info *ti, void *clientdata) {
swig_cast_info *cast = ti->cast;
/* if (ti->clientdata == clientdata) return; */
ti->clientdata = clientdata;
while (cast) {
if (!cast->converter) {
swig_type_info *tc = cast->type;
if (!tc->clientdata) {
SWIG_TypeClientData(tc, clientdata);
}
}
cast = cast->next;
}
}
SWIGRUNTIME void
SWIG_TypeNewClientData(swig_type_info *ti, void *clientdata) {
SWIG_TypeClientData(ti, clientdata);
ti->owndata = 1;
}
/*
Search for a swig_type_info structure only by mangled name
Search is a O(log #types)
We start searching at module start, and finish searching when start == end.
Note: if start == end at the beginning of the function, we go all the way around
the circular list.
*/
SWIGRUNTIME swig_type_info *
SWIG_MangledTypeQueryModule(swig_module_info *start,
swig_module_info *end,
const char *name) {
swig_module_info *iter = start;
do {
if (iter->size) {
size_t l = 0;
size_t r = iter->size - 1;
do {
/* since l+r >= 0, we can (>> 1) instead (/ 2) */
size_t i = (l + r) >> 1;
const char *iname = iter->types[i]->name;
if (iname) {
int compare = strcmp(name, iname);
if (compare == 0) {
return iter->types[i];
} else if (compare < 0) {
if (i) {
r = i - 1;
} else {
break;
}
} else if (compare > 0) {
l = i + 1;
}
} else {
break; /* should never happen */
}
} while (l <= r);
}
iter = iter->next;
} while (iter != end);
return 0;
}
/*
Search for a swig_type_info structure for either a mangled name or a human readable name.
It first searches the mangled names of the types, which is a O(log #types)
If a type is not found it then searches the human readable names, which is O(#types).
We start searching at module start, and finish searching when start == end.
Note: if start == end at the beginning of the function, we go all the way around
the circular list.
*/
SWIGRUNTIME swig_type_info *
SWIG_TypeQueryModule(swig_module_info *start,
swig_module_info *end,
const char *name) {
/* STEP 1: Search the name field using binary search */
swig_type_info *ret = SWIG_MangledTypeQueryModule(start, end, name);
if (ret) {
return ret;
} else {
/* STEP 2: If the type hasn't been found, do a complete search
of the str field (the human readable name) */
swig_module_info *iter = start;
do {
size_t i = 0;
for (; i < iter->size; ++i) {
if (iter->types[i]->str && (SWIG_TypeEquiv(iter->types[i]->str, name)))
return iter->types[i];
}
iter = iter->next;
} while (iter != end);
}
/* neither found a match */
return 0;
}
/*
Pack binary data into a string
*/
SWIGRUNTIME char *
SWIG_PackData(char *c, void *ptr, size_t sz) {
static const char hex[17] = "0123456789abcdef";
const unsigned char *u = (unsigned char *) ptr;
const unsigned char *eu = u + sz;
for (; u != eu; ++u) {
unsigned char uu = *u;
*(c++) = hex[(uu & 0xf0) >> 4];
*(c++) = hex[uu & 0xf];
}
return c;
}
/*
Unpack binary data from a string
*/
SWIGRUNTIME const char *
SWIG_UnpackData(const char *c, void *ptr, size_t sz) {
unsigned char *u = (unsigned char *) ptr;
const unsigned char *eu = u + sz;
for (; u != eu; ++u) {
char d = *(c++);
unsigned char uu;
if ((d >= '0') && (d <= '9'))
uu = ((d - '0') << 4);
else if ((d >= 'a') && (d <= 'f'))
uu = ((d - ('a'-10)) << 4);
else
return (char *) 0;
d = *(c++);
if ((d >= '0') && (d <= '9'))
uu |= (d - '0');
else if ((d >= 'a') && (d <= 'f'))
uu |= (d - ('a'-10));
else
return (char *) 0;
*u = uu;
}
return c;
}
/*
Pack 'void *' into a string buffer.
*/
SWIGRUNTIME char *
SWIG_PackVoidPtr(char *buff, void *ptr, const char *name, size_t bsz) {
char *r = buff;
if ((2*sizeof(void *) + 2) > bsz) return 0;
*(r++) = '_';
r = SWIG_PackData(r,&ptr,sizeof(void *));
if (strlen(name) + 1 > (bsz - (r - buff))) return 0;
strcpy(r,name);
return buff;
}
SWIGRUNTIME const char *
SWIG_UnpackVoidPtr(const char *c, void **ptr, const char *name) {
if (*c != '_') {
if (strcmp(c,"NULL") == 0) {
*ptr = (void *) 0;
return name;
} else {
return 0;
}
}
return SWIG_UnpackData(++c,ptr,sizeof(void *));
}
SWIGRUNTIME char *
SWIG_PackDataName(char *buff, void *ptr, size_t sz, const char *name, size_t bsz) {
char *r = buff;
size_t lname = (name ? strlen(name) : 0);
if ((2*sz + 2 + lname) > bsz) return 0;
*(r++) = '_';
r = SWIG_PackData(r,ptr,sz);
if (lname) {
strncpy(r,name,lname+1);
} else {
*r = 0;
}
return buff;
}
SWIGRUNTIME const char *
SWIG_UnpackDataName(const char *c, void *ptr, size_t sz, const char *name) {
if (*c != '_') {
if (strcmp(c,"NULL") == 0) {
memset(ptr,0,sz);
return name;
} else {
return 0;
}
}
return SWIG_UnpackData(++c,ptr,sz);
}
#ifdef __cplusplus
}
#endif
/* Errors in SWIG */
#define SWIG_UnknownError -1
#define SWIG_IOError -2
#define SWIG_RuntimeError -3
#define SWIG_IndexError -4
#define SWIG_TypeError -5
#define SWIG_DivisionByZero -6
#define SWIG_OverflowError -7
#define SWIG_SyntaxError -8
#define SWIG_ValueError -9
#define SWIG_SystemError -10
#define SWIG_AttributeError -11
#define SWIG_MemoryError -12
#define SWIG_NullReferenceError -13
SWIGRUNTIME bool SWIG_check_num_args(const char *func_name, int num_args, int max_args, int min_args, int varargs) {
if (num_args > max_args && !varargs)
mexWarnMsgIdAndTxt("SWIG","function %s takes at most %i arguments", func_name, max_args);
else if (num_args < min_args)
mexWarnMsgIdAndTxt("SWIG","function %s requires at least %i arguments", func_name, min_args);
else
return true;
return false;
}
SWIGRUNTIME const char* SWIG_ErrorType(int code) {
switch (code) {
case SWIG_MemoryError:
return "SWIG:MemoryError";
case SWIG_IOError:
return "SWIG:IOError";
case SWIG_RuntimeError:
return "SWIG:RuntimeError";
case SWIG_IndexError:
return "SWIG:IndexError";
case SWIG_TypeError:
return "SWIG:TypeError";
case SWIG_DivisionByZero:
return "SWIG:DivisionByZero";
case SWIG_OverflowError:
return "SWIG:OverflowError";
case SWIG_SyntaxError:
return "SWIG:SyntaxError";
case SWIG_ValueError:
return "SWIG:ValueError";
case SWIG_SystemError:
return "SWIG:SystemError";
case SWIG_AttributeError:
return "SWIG:AttributeError";
}
return "SWIG:UnknownError";
}
SWIGRUNTIME void SWIG_Error(int code, const char *msg) {
mexWarnMsgIdAndTxt(SWIG_ErrorType(code),msg);
}
#define SWIG_fail goto fail
#define SWIG_Matlab_ConvertPtr(obj, pptr, type, flags) SWIG_Matlab_ConvertPtrAndOwn(obj, pptr, type, flags, 0)
#define SWIG_ConvertPtr(obj, pptr, type, flags) SWIG_Matlab_ConvertPtr(obj, pptr, type, flags)
#define SWIG_ConvertPtrAndOwn(obj,pptr,type,flags,own) SWIG_Matlab_ConvertPtrAndOwn(obj, pptr, type, flags, own)
#define SWIG_ConvertPtr(obj, pptr, type, flags) SWIG_Matlab_ConvertPtr(obj, pptr, type, flags)
#define SWIG_NewPointerObj(ptr, type, flags) SWIG_Matlab_NewPointerObj(ptr, type, flags)
#define swig_owntype int
#define SWIG_ConvertPacked(obj, ptr, sz, ty) SWIG_Matlab_ConvertPacked(obj, ptr, sz, ty)
#define SWIG_NewPackedObj(ptr, sz, type) SWIG_Matlab_NewPackedObj(ptr, sz, type)
#define SWIG_ConvertFunctionPtr(obj, pptr, type) SWIG_ConvertPtr(obj, pptr, type, 0)
#define SWIG_NewFunctionPtrObj(ptr, type) SWIG_NewPointerObj(ptr, type, 0)
#define SWIG_ConvertMember(obj, ptr, sz, ty) SWIG_Matlab_ConvertPacked(obj, ptr, sz, ty)
#define SWIG_NewMemberObj(ptr, sz, type) SWIG_Matlab_NewPackedObj(ptr, sz, type)
#define SWIG_GetModule(clientdata) SWIG_Matlab_GetModule(clientdata)
#define SWIG_SetModule(clientdata, pointer) SWIG_Matlab_SetModule(clientdata,pointer);
#define SWIG_MODULE_CLIENTDATA_TYPE void*
#define Matlab_Error_Occurred() 0
#define SWIG_Matlab_AddErrorMsg(msg) {;}
SWIGRUNTIME swig_module_info *SWIG_Matlab_GetModule(void *clientdata);
SWIGRUNTIME void SWIG_Matlab_SetModule(void *clientdata, swig_module_info *pointer);
// For backward compatibility only
#define SWIG_POINTER_EXCEPTION 0
#define SWIG_arg_fail(arg) 0
// Runtime API implementation
#include <map>
#include <vector>
#include <string>
SWIGRUNTIME mxArray* SWIG_Matlab_NewPointerObj(void *ptr, swig_type_info *type, int flags) {
mxArray* pm_command = mxCreateString("_swigCreate");
mxArray *pm_ptr = mxCreateNumericMatrix(1,1,mxUINT64_CLASS, mxREAL);
if(!pm_ptr) mexErrMsgIdAndTxt("SWIG:NewPointerObj","mxCreateNumericMatrix failed");
*(uint64_T *)mxGetData(pm_ptr) = (uint64_T)ptr;
bool own = (flags & SWIG_POINTER_OWN) ? SWIG_POINTER_OWN : 0;
mxArray* pm_own = mxCreateLogicalScalar(own);
if(!pm_own) mexErrMsgIdAndTxt("SWIG:NewPointerObj","mxCreateLogicalScalar failed");
mxArray* prhs[3] = {pm_command,pm_ptr,pm_own};
mxArray* plhs[1];
const char* matlab_classname = type->name+3; /* FIXME: Hack to dereferece pointer */
mxArray* ex = mexCallMATLABWithTrap(1,plhs,3,prhs,matlab_classname);
if(ex) mexErrMsgIdAndTxt("SWIG:NewPointerObj","mexCallMATLABWithTrap threw exception");
mxDestroyArray(pm_ptr);
mxDestroyArray(pm_own);
mxDestroyArray(pm_command);
return plhs[0];
}
SWIGRUNTIME int SWIG_Matlab_ConvertPtrAndOwn(mxArray* pm, void **ptr, swig_type_info *type, int flags, int *own) {
/* Return value */
int ret = SWIG_OK;
/* Get pointer, represented as a uint64_T scalar */
mxArray *pm_ptr = mxGetProperty(pm,0,"swigCPtr");
if(!pm_ptr || mxGetNumberOfElements(pm_ptr) != 1 || mxGetClassID(pm_ptr) != mxUINT64_CLASS || mxIsComplex(pm_ptr)){
ret = SWIG_ERROR;
} else {
if(ptr) *ptr = (void*)(*(uint64_T*)mxGetData(pm_ptr));
}
if(pm_ptr) mxDestroyArray(pm_ptr);
/* Get ownership marker */
mxArray *pm_own = mxGetProperty(pm,0,"swigOwn");
if(!pm_own || !mxIsLogicalScalar(pm_own)){
ret = SWIG_ERROR;
} else {
if(own) *own = mxIsLogicalScalarTrue(pm_own);
}
if(pm_own) mxDestroyArray(pm_own);
/* Set ownership marker to false? */
if(flags & SWIG_POINTER_DISOWN){
mxArray* pm_own = mxCreateLogicalScalar(false);
mxSetProperty(pm,0,"swigOwn",pm_own);
mxDestroyArray(pm_own);
}
return ret;
}
SWIGRUNTIME swig_module_info *SWIG_Matlab_GetModule(void *clientdata) {
swig_module_info *pointer = 0;
return pointer;
}
SWIGRUNTIME void SWIG_Matlab_SetModule(void *clientdata, swig_module_info *pointer) {
}
#define SWIG_exception_fail(code, msg) do { SWIG_Error(code, msg); SWIG_fail; } while(0)
#define SWIG_contract_assert(expr, msg) if (!(expr)) { SWIG_Error(SWIG_RuntimeError, msg); SWIG_fail; } else
/* -------- TYPES TABLE (BEGIN) -------- */
#define SWIGTYPE_p_Circle swig_types[0]
#define SWIGTYPE_p_Shape swig_types[1]
#define SWIGTYPE_p_Square swig_types[2]
#define SWIGTYPE_p_char swig_types[3]
static swig_type_info *swig_types[5];
static swig_module_info swig_module = {swig_types, 4, 0, 0, 0, 0};
#define SWIG_TypeQuery(name) SWIG_TypeQueryModule(&swig_module, &swig_module, name)
#define SWIG_MangledTypeQuery(name) SWIG_MangledTypeQueryModule(&swig_module, &swig_module, name)
/* -------- TYPES TABLE (END) -------- */
#define SWIGVERSION 0x030001
#define SWIG_VERSION SWIGVERSION
#define SWIG_as_voidptr(a) (void *)((const void *)(a))
#define SWIG_as_voidptrptr(a) ((void)SWIG_as_voidptr(*a),(void**)(a))
#include <stdexcept>
#include "example.h"
SWIGINTERN int SWIG_AsVal_double (mxArray* pm, double* val)
{
if(!mxIsDouble(pm) || mxGetNumberOfElements(pm)!=1) return SWIG_TypeError;
if (val) *val = mxGetScalar(pm);
return SWIG_OK;
}
SWIGINTERNINLINE mxArray* SWIG_From_double (double value)
{
return mxCreateDoubleScalar(value);
}
#include <limits.h>
#if !defined(SWIG_NO_LLONG_MAX)
# if !defined(LLONG_MAX) && defined(__GNUC__) && defined (__LONG_LONG_MAX__)
# define LLONG_MAX __LONG_LONG_MAX__
# define LLONG_MIN (-LLONG_MAX - 1LL)
# define ULLONG_MAX (LLONG_MAX * 2ULL + 1ULL)
# endif
#endif
SWIGINTERN int SWIG_AsVal_long (mxArray* pm, long* val)
{
if(mxGetNumberOfElements(pm)!=1) return SWIG_TypeError;
switch(mxGetClassID(pm)){
case mxINT8_CLASS:
if(val) *val = (long)(*(int8_T*)mxGetData(pm)); break;
case mxUINT8_CLASS:
if(val) *val = (long)(*(uint8_T*)mxGetData(pm)); break;
case mxINT16_CLASS:
if(val) *val = (long)(*(int16_T*)mxGetData(pm)); break;
case mxUINT16_CLASS:
if(val) *val = (long)(*(uint16_T*)mxGetData(pm)); break;
case mxINT32_CLASS:
if(val) *val = (long)(*(int32_T*)mxGetData(pm)); break;
case mxUINT32_CLASS:
if(val) *val = (long)(*(uint32_T*)mxGetData(pm)); break;
case mxINT64_CLASS:
if(val) *val = (long)(*(int64_T*)mxGetData(pm)); break;
case mxUINT64_CLASS:
if(val) *val = (long)(*(uint64_T*)mxGetData(pm)); break;
case mxDOUBLE_CLASS:
{
double v=mxGetScalar(pm);
if(v!=floor(v)) return SWIG_TypeError;
if(val) *val = (long)v;
break;
}
default: return SWIG_TypeError;
}
return SWIG_OK;
}
SWIGINTERN int
SWIG_AsVal_int (mxArray* obj, int *val)
{
long v;
int res = SWIG_AsVal_long (obj, &v);
if (SWIG_IsOK(res)) {
if ((v < INT_MIN || v > INT_MAX)) {
return SWIG_OverflowError;
} else {
if (val) *val = (int)(v);
}
}
return res;
}
SWIGINTERNINLINE mxArray* SWIG_From_long (long value)
{
mxArray* out = mxCreateNumericMatrix(1,1,mxINT64_CLASS,mxREAL);
*((int64_T*)mxGetData(out)) = (int64_T)value;
return out;
}
SWIGINTERNINLINE mxArray*
SWIG_From_int (int value)
{
return SWIG_From_long (value);
}
void _wrap_delete_Shape (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("delete_Shape",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, SWIG_POINTER_DISOWN | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Shape" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
delete arg1;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function delete_Shape.");
}
void _wrap_Shape_x_set (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
double arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("Shape_x_set",argc,2,2,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_x_set" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
ecode2 = SWIG_AsVal_double(argv[1], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Shape_x_set" "', argument " "2"" of type '" "double""'");
}
arg2 = (double)(val2);
if (arg1) (arg1)->x = arg2;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_x_set.");
}
void _wrap_Shape_x_get (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Shape_x_get",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_x_get" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
result = (double) ((arg1)->x);
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_x_get.");
}
void _wrap_Shape_y_set (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
double arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("Shape_y_set",argc,2,2,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_y_set" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
ecode2 = SWIG_AsVal_double(argv[1], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Shape_y_set" "', argument " "2"" of type '" "double""'");
}
arg2 = (double)(val2);
if (arg1) (arg1)->y = arg2;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_y_set.");
}
void _wrap_Shape_y_get (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Shape_y_get",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_y_get" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
result = (double) ((arg1)->y);
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_y_get.");
}
void _wrap_Shape_move (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
double arg2 ;
double arg3 ;
void *argp1 = 0 ;
int res1 = 0 ;
double val2 ;
int ecode2 = 0 ;
double val3 ;
int ecode3 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("Shape_move",argc,3,3,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_move" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
ecode2 = SWIG_AsVal_double(argv[1], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Shape_move" "', argument " "2"" of type '" "double""'");
}
arg2 = (double)(val2);
ecode3 = SWIG_AsVal_double(argv[2], &val3);
if (!SWIG_IsOK(ecode3)) {
SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Shape_move" "', argument " "3"" of type '" "double""'");
}
arg3 = (double)(val3);
(arg1)->move(arg2,arg3);
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_move.");
}
void _wrap_Shape_area (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Shape_area",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_area" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
result = (double)(arg1)->area();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_area.");
}
void _wrap_Shape_perimeter (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Shape *arg1 = (Shape *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Shape_perimeter",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Shape, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Shape_perimeter" "', argument " "1"" of type '" "Shape *""'");
}
arg1 = (Shape *)(argp1);
result = (double)(arg1)->perimeter();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_perimeter.");
}
void _wrap_Shape_nshapes_set (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
int arg1 ;
int val1 ;
int ecode1 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("Shape_nshapes_set",argc,1,1,0)) {
SWIG_fail;
}
ecode1 = SWIG_AsVal_int(argv[0], &val1);
if (!SWIG_IsOK(ecode1)) {
SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Shape_nshapes_set" "', argument " "1"" of type '" "int""'");
}
arg1 = (int)(val1);
Shape::nshapes = arg1;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_nshapes_set.");
}
void _wrap_Shape_nshapes_get (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
mxArray * _out;
int result;
if (!SWIG_check_num_args("Shape_nshapes_get",argc,0,0,0)) {
SWIG_fail;
}
result = (int)Shape::nshapes;
_out = SWIG_From_int((int)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Shape_nshapes_get.");
}
void _wrap_new_Circle (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
double arg1 ;
double val1 ;
int ecode1 = 0 ;
mxArray * _out;
Circle *result = 0 ;
if (!SWIG_check_num_args("new_Circle",argc,1,1,0)) {
SWIG_fail;
}
ecode1 = SWIG_AsVal_double(argv[0], &val1);
if (!SWIG_IsOK(ecode1)) {
SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Circle" "', argument " "1"" of type '" "double""'");
}
arg1 = (double)(val1);
result = (Circle *)new Circle(arg1);
_out = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Circle, 1 | 0 );
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function new_Circle.");
}
void _wrap_Circle_area (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Circle *arg1 = (Circle *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Circle_area",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Circle, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Circle_area" "', argument " "1"" of type '" "Circle *""'");
}
arg1 = (Circle *)(argp1);
result = (double)(arg1)->area();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Circle_area.");
}
void _wrap_Circle_foo__SWIG_0 (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Circle *arg1 = (Circle *) 0 ;
int arg2 ;
void *argp1 = 0 ;
int res1 = 0 ;
int val2 ;
int ecode2 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Circle_foo",argc,2,2,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Circle, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Circle_foo" "', argument " "1"" of type '" "Circle *""'");
}
arg1 = (Circle *)(argp1);
ecode2 = SWIG_AsVal_int(argv[1], &val2);
if (!SWIG_IsOK(ecode2)) {
SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Circle_foo" "', argument " "2"" of type '" "int""'");
}
arg2 = (int)(val2);
result = (double)(arg1)->foo(arg2);
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Circle_foo.");
}
void _wrap_Circle_foo__SWIG_1 (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Circle *arg1 = (Circle *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Circle_foo",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Circle, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Circle_foo" "', argument " "1"" of type '" "Circle *""'");
}
arg1 = (Circle *)(argp1);
result = (double)(arg1)->foo();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Circle_foo.");
}
void _wrap_Circle_foo (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
if (argc == 1) {
int _v;
void *vptr = 0;
int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Circle, 0);
_v = SWIG_CheckState(res);
if (_v) {
return _wrap_Circle_foo__SWIG_1(resc,resv,argc,argv);
}
}
if (argc == 2) {
int _v;
void *vptr = 0;
int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Circle, 0);
_v = SWIG_CheckState(res);
if (_v) {
{
int res = SWIG_AsVal_int(argv[1], NULL);
_v = SWIG_CheckState(res);
}
if (_v) {
return _wrap_Circle_foo__SWIG_0(resc,resv,argc,argv);
}
}
}
mexWarnMsgIdAndTxt("SWIG","No matching function for overload");
return;
}
void _wrap_Circle_perimeter (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Circle *arg1 = (Circle *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Circle_perimeter",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Circle, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Circle_perimeter" "', argument " "1"" of type '" "Circle *""'");
}
arg1 = (Circle *)(argp1);
result = (double)(arg1)->perimeter();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Circle_perimeter.");
}
void _wrap_delete_Circle (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Circle *arg1 = (Circle *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("delete_Circle",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Circle, SWIG_POINTER_DISOWN | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Circle" "', argument " "1"" of type '" "Circle *""'");
}
arg1 = (Circle *)(argp1);
delete arg1;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function delete_Circle.");
}
void _wrap_new_Square (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
double arg1 ;
double val1 ;
int ecode1 = 0 ;
mxArray * _out;
Square *result = 0 ;
if (!SWIG_check_num_args("new_Square",argc,1,1,0)) {
SWIG_fail;
}
ecode1 = SWIG_AsVal_double(argv[0], &val1);
if (!SWIG_IsOK(ecode1)) {
SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Square" "', argument " "1"" of type '" "double""'");
}
arg1 = (double)(val1);
result = (Square *)new Square(arg1);
_out = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Square, 1 | 0 );
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function new_Square.");
}
void _wrap_Square_area (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Square *arg1 = (Square *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Square_area",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Square, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Square_area" "', argument " "1"" of type '" "Square *""'");
}
arg1 = (Square *)(argp1);
result = (double)(arg1)->area();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Square_area.");
}
void _wrap_Square_perimeter (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Square *arg1 = (Square *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
double result;
if (!SWIG_check_num_args("Square_perimeter",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Square, 0 | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Square_perimeter" "', argument " "1"" of type '" "Square *""'");
}
arg1 = (Square *)(argp1);
result = (double)(arg1)->perimeter();
_out = SWIG_From_double((double)(result));
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function Square_perimeter.");
}
void _wrap_delete_Square (int resc, mxArray *resv[], int argc, mxArray *argv[]) {
Square *arg1 = (Square *) 0 ;
void *argp1 = 0 ;
int res1 = 0 ;
mxArray * _out;
if (!SWIG_check_num_args("delete_Square",argc,1,1,0)) {
SWIG_fail;
}
res1 = SWIG_ConvertPtr(argv[0], &argp1,SWIGTYPE_p_Square, SWIG_POINTER_DISOWN | 0 );
if (!SWIG_IsOK(res1)) {
SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Square" "', argument " "1"" of type '" "Square *""'");
}
arg1 = (Square *)(argp1);
delete arg1;
_out = (mxArray*)0;
if(resc>0) *resv = _out;
return;
fail:
mexErrMsgTxt("Failure in function delete_Square.");
}
/* -------- TYPE CONVERSION AND EQUIVALENCE RULES (BEGIN) -------- */
static void *_p_SquareTo_p_Shape(void *x, int *SWIGUNUSEDPARM(newmemory)) {
return (void *)((Shape *) ((Square *) x));
}
static void *_p_CircleTo_p_Shape(void *x, int *SWIGUNUSEDPARM(newmemory)) {
return (void *)((Shape *) ((Circle *) x));
}
static swig_type_info _swigt__p_Circle = {"_p_Circle", "Circle *", 0, 0, (void*)0, 0};
static swig_type_info _swigt__p_Shape = {"_p_Shape", "Shape *", 0, 0, (void*)0, 0};
static swig_type_info _swigt__p_Square = {"_p_Square", "Square *", 0, 0, (void*)0, 0};
static swig_type_info _swigt__p_char = {"_p_char", "char *", 0, 0, (void*)0, 0};
static swig_type_info *swig_type_initial[] = {
&_swigt__p_Circle,
&_swigt__p_Shape,
&_swigt__p_Square,
&_swigt__p_char,
};
static swig_cast_info _swigc__p_Circle[] = { {&_swigt__p_Circle, 0, 0, 0},{0, 0, 0, 0}};
static swig_cast_info _swigc__p_Shape[] = { {&_swigt__p_Square, _p_SquareTo_p_Shape, 0, 0}, {&_swigt__p_Shape, 0, 0, 0}, {&_swigt__p_Circle, _p_CircleTo_p_Shape, 0, 0},{0, 0, 0, 0}};
static swig_cast_info _swigc__p_Square[] = { {&_swigt__p_Square, 0, 0, 0},{0, 0, 0, 0}};
static swig_cast_info _swigc__p_char[] = { {&_swigt__p_char, 0, 0, 0},{0, 0, 0, 0}};
static swig_cast_info *swig_cast_initial[] = {
_swigc__p_Circle,
_swigc__p_Shape,
_swigc__p_Square,
_swigc__p_char,
};
/* -------- TYPE CONVERSION AND EQUIVALENCE RULES (END) -------- */
/* -----------------------------------------------------------------------------
* Type initialization:
* This problem is tough by the requirement that no dynamic
* memory is used. Also, since swig_type_info structures store pointers to
* swig_cast_info structures and swig_cast_info structures store pointers back
* to swig_type_info structures, we need some lookup code at initialization.
* The idea is that swig generates all the structures that are needed.
* The runtime then collects these partially filled structures.
* The SWIG_InitializeModule function takes these initial arrays out of
* swig_module, and does all the lookup, filling in the swig_module.types
* array with the correct data and linking the correct swig_cast_info
* structures together.
*
* The generated swig_type_info structures are assigned statically to an initial
* array. We just loop through that array, and handle each type individually.
* First we lookup if this type has been already loaded, and if so, use the
* loaded structure instead of the generated one. Then we have to fill in the
* cast linked list. The cast data is initially stored in something like a
* two-dimensional array. Each row corresponds to a type (there are the same
* number of rows as there are in the swig_type_initial array). Each entry in
* a column is one of the swig_cast_info structures for that type.
* The cast_initial array is actually an array of arrays, because each row has
* a variable number of columns. So to actually build the cast linked list,
* we find the array of casts associated with the type, and loop through it
* adding the casts to the list. The one last trick we need to do is making
* sure the type pointer in the swig_cast_info struct is correct.
*
* First off, we lookup the cast->type name to see if it is already loaded.
* There are three cases to handle:
* 1) If the cast->type has already been loaded AND the type we are adding
* casting info to has not been loaded (it is in this module), THEN we
* replace the cast->type pointer with the type pointer that has already
* been loaded.
* 2) If BOTH types (the one we are adding casting info to, and the
* cast->type) are loaded, THEN the cast info has already been loaded by
* the previous module so we just ignore it.
* 3) Finally, if cast->type has not already been loaded, then we add that
* swig_cast_info to the linked list (because the cast->type) pointer will
* be correct.
* ----------------------------------------------------------------------------- */
#ifdef __cplusplus
extern "C" {
#if 0
} /* c-mode */
#endif
#endif
#if 0
#define SWIGRUNTIME_DEBUG
#endif
SWIGRUNTIME void
SWIG_InitializeModule(void *clientdata) {
size_t i;
swig_module_info *module_head, *iter;
int found, init;
/* check to see if the circular list has been setup, if not, set it up */
if (swig_module.next==0) {
/* Initialize the swig_module */
swig_module.type_initial = swig_type_initial;
swig_module.cast_initial = swig_cast_initial;
swig_module.next = &swig_module;
init = 1;
} else {
init = 0;
}
/* Try and load any already created modules */
module_head = SWIG_GetModule(clientdata);
if (!module_head) {
/* This is the first module loaded for this interpreter */
/* so set the swig module into the interpreter */
SWIG_SetModule(clientdata, &swig_module);
module_head = &swig_module;
} else {
/* the interpreter has loaded a SWIG module, but has it loaded this one? */
found=0;
iter=module_head;
do {
if (iter==&swig_module) {
found=1;
break;
}
iter=iter->next;
} while (iter!= module_head);
/* if the is found in the list, then all is done and we may leave */
if (found) return;
/* otherwise we must add out module into the list */
swig_module.next = module_head->next;
module_head->next = &swig_module;
}
/* When multiple interpreters are used, a module could have already been initialized in
a different interpreter, but not yet have a pointer in this interpreter.
In this case, we do not want to continue adding types... everything should be
set up already */
if (init == 0) return;
/* Now work on filling in swig_module.types */
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: size %d\n", swig_module.size);
#endif
for (i = 0; i < swig_module.size; ++i) {
swig_type_info *type = 0;
swig_type_info *ret;
swig_cast_info *cast;
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: type %d %s\n", i, swig_module.type_initial[i]->name);
#endif
/* if there is another module already loaded */
if (swig_module.next != &swig_module) {
type = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, swig_module.type_initial[i]->name);
}
if (type) {
/* Overwrite clientdata field */
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: found type %s\n", type->name);
#endif
if (swig_module.type_initial[i]->clientdata) {
type->clientdata = swig_module.type_initial[i]->clientdata;
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: found and overwrite type %s \n", type->name);
#endif
}
} else {
type = swig_module.type_initial[i];
}
/* Insert casting types */
cast = swig_module.cast_initial[i];
while (cast->type) {
/* Don't need to add information already in the list */
ret = 0;
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: look cast %s\n", cast->type->name);
#endif
if (swig_module.next != &swig_module) {
ret = SWIG_MangledTypeQueryModule(swig_module.next, &swig_module, cast->type->name);
#ifdef SWIGRUNTIME_DEBUG
if (ret) printf("SWIG_InitializeModule: found cast %s\n", ret->name);
#endif
}
if (ret) {
if (type == swig_module.type_initial[i]) {
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: skip old type %s\n", ret->name);
#endif
cast->type = ret;
ret = 0;
} else {
/* Check for casting already in the list */
swig_cast_info *ocast = SWIG_TypeCheck(ret->name, type);
#ifdef SWIGRUNTIME_DEBUG
if (ocast) printf("SWIG_InitializeModule: skip old cast %s\n", ret->name);
#endif
if (!ocast) ret = 0;
}
}
if (!ret) {
#ifdef SWIGRUNTIME_DEBUG
printf("SWIG_InitializeModule: adding cast %s\n", cast->type->name);
#endif
if (type->cast) {
type->cast->prev = cast;
cast->next = type->cast;
}
type->cast = cast;
}
cast++;
}
/* Set entry in modules->types array equal to the type */
swig_module.types[i] = type;
}
swig_module.types[i] = 0;
#ifdef SWIGRUNTIME_DEBUG
printf("**** SWIG_InitializeModule: Cast List ******\n");
for (i = 0; i < swig_module.size; ++i) {
int j = 0;
swig_cast_info *cast = swig_module.cast_initial[i];
printf("SWIG_InitializeModule: type %d %s\n", i, swig_module.type_initial[i]->name);
while (cast->type) {
printf("SWIG_InitializeModule: cast type %s\n", cast->type->name);
cast++;
++j;
}
printf("---- Total casts: %d\n",j);
}
printf("**** SWIG_InitializeModule: Cast List ******\n");
#endif
}
/* This function will propagate the clientdata field of type to
* any new swig_type_info structures that have been added into the list
* of equivalent types. It is like calling
* SWIG_TypeClientData(type, clientdata) a second time.
*/
SWIGRUNTIME void
SWIG_PropagateClientData(void) {
size_t i;
swig_cast_info *equiv;
static int init_run = 0;
if (init_run) return;
init_run = 1;
for (i = 0; i < swig_module.size; i++) {
if (swig_module.types[i]->clientdata) {
equiv = swig_module.types[i]->cast;
while (equiv) {
if (!equiv->converter) {
if (equiv->type && !equiv->type->clientdata)
SWIG_TypeClientData(equiv->type, swig_module.types[i]->clientdata);
}
equiv = equiv->next;
}
}
}
}
#ifdef __cplusplus
#if 0
{ /* c-mode */
#endif
}
#endif
static bool is_loaded = false;
void SWIG_Matlab_LoadModule(const char* name) {
SWIG_InitializeModule(0);
SWIG_PropagateClientData();
if(false){
mexErrMsgIdAndTxt("SWIG:LoadFailure","Could not load module %s",name);
}
}
extern "C"
void mexFunction(int resc, mxArray *resv[], int argc, const mxArray *argv[]){
if(!is_loaded){
SWIG_Matlab_LoadModule(SWIG_name_d);
is_loaded=true;
}
char cmd[256];
if(argc < 1 || mxGetString(argv[0], cmd, sizeof(cmd)))
mexWarnMsgTxt("First input should be a command string less than 256 characters long.");
if(!strcmp("delete_Shape",cmd)){
_wrap_delete_Shape(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Shape_move",cmd)){
_wrap_Shape_move(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Shape_area",cmd)){
_wrap_Shape_area(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Shape_perimeter",cmd)){
_wrap_Shape_perimeter(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("new_Circle",cmd)){
_wrap_new_Circle(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Circle_area",cmd)){
_wrap_Circle_area(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Circle_foo",cmd)){
_wrap_Circle_foo(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Circle_perimeter",cmd)){
_wrap_Circle_perimeter(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("delete_Circle",cmd)){
_wrap_delete_Circle(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("new_Square",cmd)){
_wrap_new_Square(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Square_area",cmd)){
_wrap_Square_area(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("Square_perimeter",cmd)){
_wrap_Square_perimeter(resc,resv,argc-1,(mxArray**)(argv+1));
} else if(!strcmp("delete_Square",cmd)){
_wrap_delete_Square(resc,resv,argc-1,(mxArray**)(argv+1));
} else {
mexWarnMsgIdAndTxt("SWIG","No command %s.",cmd);
}
}
classdef Shape < SwigRef
methods
function delete(self)
if self.swigOwn
example_wrap('delete_Shape',self);
end
end
function varargout = move(self,varargin)
[varargout{1:nargout}] = example_wrap('Shape_move',self,varargin{:});
end
function varargout = area(self,varargin)
[varargout{1:nargout}] = example_wrap('Shape_area',self,varargin{:});
end
function varargout = perimeter(self,varargin)
[varargout{1:nargout}] = example_wrap('Shape_perimeter',self,varargin{:});
end
function self = Shape(varargin)
if nargin==3 && ischar(varargin{1}) && strcmp(varargin{1},'_swigCreate')
self.swigCPtr = varargin{2};
self.swigOwn = varargin{3};
else
error('No matching constructor');
end
end
end
end
classdef Square < Shape
methods
function self = Square(varargin)
self@Shape('_swigCreate',uint64(0),false);
if nargin==3 && ischar(varargin{1}) && strcmp(varargin{1},'_swigCreate')
self.swigCPtr = varargin{2};
self.swigOwn = varargin{3};
else
% How to get working on C side? Commented out, replaed by hack below
%self.swigCPtr = example_wrap('new_Square',varargin{:});
%self.swigOwn = true;
tmp = example_wrap('new_Square',varargin{:}); % FIXME
self.swigCPtr = tmp.swigCPtr;
self.swigOwn = tmp.swigOwn;
tmp.swigOwn = false;
end
end
function varargout = area(self,varargin)
[varargout{1:nargout}] = example_wrap('Square_area',self,varargin{:});
end
function varargout = perimeter(self,varargin)
[varargout{1:nargout}] = example_wrap('Square_perimeter',self,varargin{:});
end
function delete(self)
if self.swigOwn
example_wrap('delete_Square',self);
end
end
end
end
classdef SwigRef < handle
properties % (GetAccess = protected, SetAccess = protected) % FIXME: mxGetProperty not working with protected access
swigCPtr
swigOwn
end
end
@ghorn

So you're using strings to reduce the number of mexFunctions?

@jaeandersson

So you're using strings to reduce the number of mexFunctions?

mexFunctions have a single entry point and it makes it much easier if we can have just one mexFunctions per SWIG module. I use strings in the current version. In a future version, it probably makes sense to replace it with an index for efficiency. In particular it makes it very simple to compile. To compile the above all you need to do is to call "mex example_wrap.cxx example.cxx" from MATLAB.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.