| library(dplyr, warn.conflicts=FALSE) | |
| library(ggplot2) | |
| daily <- readRDS("daily.rds") | |
| daily | |
| # Take the data from 2014 | |
| perioddata <- daily %>% filter(date >= as.Date("2014-01-01")) | |
| perioddata | |
| # Take a look only at packages we're interested in | |
| pkgdata <- perioddata %>% filter(package %in% c("BRugs", "rbugs", "R2WinBUGS")) | |
| pkgdata | |
| # Plot | |
| ggplot(pkgdata, aes(x = date, y = count, color = package)) + | |
| expand_limits(y = 0) + | |
| geom_line() | |
| # Seems a little rough. Let's smooth it out | |
| ggplot(pkgdata, aes(x = date, y = count, color = package)) + | |
| expand_limits(y = 0) + | |
| geom_smooth(se = FALSE, method = "loess") | |
| # Maybe too smooth... try less | |
| ggplot(pkgdata, aes(x = date, y = count, color = package)) + | |
| expand_limits(y = 0) + | |
| geom_smooth(se = FALSE, method = "loess", span = 0.4) |
| title | author | output |
|---|---|---|
Download counts |
Joe Cheng |
html_document |
Source: http://cran-logs.rstudio.com/
library(dplyr, warn.conflicts=FALSE)
library(ggplot2)
daily <- readRDS("daily.rds")# Take the data from 2014
perioddata <- daily %>% filter(date >= as.Date("2014-01-01"))
# Take a look only at packages we're interested in
pkgdata <- perioddata %>% filter(package %in% c("BRugs", "rbugs", "R2WinBUGS"))
# Plot with some smoothing
ggplot(pkgdata, aes(x = date, y = count, color = package)) +
expand_limits(y = 0) +
geom_smooth(se = FALSE, method = "loess", span = 0.4)| title | author | output | runtime |
|---|---|---|---|
Download counts |
Joe Cheng |
html_document |
shiny |
Source: http://cran-logs.rstudio.com/
library(dplyr, warn.conflicts=FALSE)
library(ggplot2)
daily <- readRDS("daily.rds")dateRangeInput("daterange", "Period",
"2014-01-01", max(daily$date), min(daily$date), max(daily$date))
perioddata <- reactive({
daily %>% filter(date >= input$daterange[1] & date <= input$daterange[2])
})
selectInput("package", "Package(s)", multiple = TRUE,
choices = sort(unique(daily$package)), selected = c("BRugs", "rbugs", "R2WinBUGS"))
pkgdata <- reactive({
perioddata() %>% filter(package %in% input$package)
})
sliderInput("smoothness", "Smoothness", 0, 1, 0.3)
# Plot with a bit of smoothing
renderPlot({
ggplot(pkgdata(), aes(x = date, y = count, color = package)) +
expand_limits(y = 0) +
geom_smooth(se = FALSE, method = "loess", span = input$smoothness)
})
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment