View audio_utils.py
import glob | |
import logging | |
import os | |
import numpy as np | |
import re | |
import soundfile | |
from numpy.lib.stride_tricks import as_strided | |
from maracas.maracas import asl_meter | |
from audio_tools import iterate_invert_spectrogram |
View train_loop.py
import torch | |
from torch.autograd import Variable | |
import numpy as np | |
import pickle | |
import os | |
from glob import glob | |
from tqdm import tqdm |
View error.log
-- Build files have been written to: /home/jfsantos/pytorch/torch/lib/build/libshm | |
[ 50%] Built target torch_shm_manager | |
[ 75%] Building CXX object CMakeFiles/shm.dir/core.cpp.o | |
/home/jfsantos/pytorch/torch/lib/libshm/core.cpp:149:1: error: invalid conversion from 'void* (*)(void*, long int)' to 'void* (*)(void*, ptrdiff_t) {aka void* (*)(void*, int)}' [-fpermissive] | |
}; | |
^ | |
/home/jfsantos/pytorch/torch/lib/libshm/core.cpp:149:1: error: invalid conversion from 'void* (*)(void*, void*, long int)' to 'void* (*)(void*, void*, ptrdiff_t) {aka void* (*)(void*, void*, int)}' [-fpermissive] | |
CMakeFiles/shm.dir/build.make:62: recipe for target 'CMakeFiles/shm.dir/core.cpp.o' failed | |
make[2]: *** [CMakeFiles/shm.dir/core.cpp.o] Error 1 | |
CMakeFiles/Makefile2:67: recipe for target 'CMakeFiles/shm.dir/all' failed |
View pairwise_distance.py
from __future__ import division | |
import multiprocessing | |
import scipy.spatial.distance | |
import numpy as np | |
import sklearn.datasets | |
from time import time | |
from multiprocessing import Pool | |
from itertools import combinations |
View pytorch_train_with_masking.py
def train_fn(model, optimizer, criterion, batch): | |
x, y, lengths = batch | |
x = Variable(x.cuda()) | |
y = Variable(y.cuda(), requires_grad=False) | |
mask = Variable(torch.ByteTensor(x.size()).fill_(1).cuda(), | |
requires_grad=False) | |
for k, l in enumerate(lengths): | |
mask[:l, k, :] = 0 |
View dummy_dataset.py
from torch.utils.data import Dataset | |
class DummyDataset(Dataset): | |
def __init__(self, items): | |
super(DummyDataset, self).__init__() | |
self.items = items | |
def __getitem__(self, index): | |
return self.items[index] |
View gist:c0f3f4cd5c76dfc5f1ba8310a821c2d5
Agility | |
&{template:default} {{name=@{selected|character_name}}}{{Agility roll=[[1d20 + @{selected|agility_mod} + [[?{# Boons|0} - ?{# Banes|0}]]d6k1]]}} | |
Intellect | |
&{template:default} {{name=@{selected|character_name}}}{{Intellect roll=[[1d20 + @{selected|intellect_mod} + [[?{# Boons|0} - ?{# Banes|0}]]d6k1]]}} | |
Perception |
View logistic_regression_with_checkpointing.py
''' | |
A logistic regression example using the meta-graph checkpointing | |
features of Tensorflow. | |
Author: João Felipe Santos, based on code by Aymeric Damien | |
(https://github.com/aymericdamien/TensorFlow-Examples/) | |
''' | |
from __future__ import print_function |
View 0_reuse_code.js
// Use Gists to store code you would like to remember later on | |
console.log(window); // log the "window" object to the console |
View example_hdf5matrix.py
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.utils.io_utils import HDF5Matrix | |
import numpy as np | |
def create_dataset(): | |
import h5py | |
X = np.random.randn(200,10).astype('float32') | |
y = np.random.randint(0, 2, size=(200,1)) | |
f = h5py.File('test.h5', 'w') |
NewerOlder