Skip to content

Instantly share code, notes, and snippets.

View jwintersinger's full-sized avatar

Jeff Wintersinger jwintersinger

View GitHub Profile
- 2 lemons, juiced
½ cup plus 1 tablespoon olive oil
6 cloves garlic, peeled, smashed and minced
1 teaspoon kosher salt
2 teaspoons freshly ground black pepper
2 teaspoons ground cumin
2 teaspoons paprika
½ teaspoon turmeric
A pinch ground cinnamon
Red pepper flakes, to taste
@jwintersinger
jwintersinger / optim_math.jl
Last active May 28, 2021 18:21
Code to optimize multi-allele tumor heterogeneity scores (MATH). Specifically, we modify an underlying VAF distribution by swapping points while maintaining a constant MAD and median, yielding a constant MATH.
# Code to optimize multi-allele tumor heterogeneity scores (MATH).
# Specifically, we modify an underlying VAF distribution by swapping points
# while maintaining a constant MAD and median, yielding a constant MATH.
using Distributions
using Random
using Statistics
using Gadfly
using Base64
import Cairo, Fontconfig
@jwintersinger
jwintersinger / bt.txt
Created November 17, 2019 17:01
projectppm backtrace
# Segfault when running with `example2.txt`
# Compiled with `gcc -g -O0 project_onto_PPM.c' on GCC 7.3.0
# Kernel version: Linux nia-login01.scinet.local 3.10.0-862.14.4.el7.x86_64 #1 SMP Wed Sep 26 15:12:11 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
jawinter@nia-login01 ~/work/projectppm-problem $ ls
example1.npz example1.py example2.sh example2.txt phi_fitter_projection.py projectppm README.md
jawinter@nia-login01 ~/work/projectppm-problem $ ~/tmp/Efficient-Projection-onto-the-Perfect-Phylogeny-Model/a.out exam
ple2.txt out.txt 1
Segmentation fault
# Backtrace
@jwintersinger
jwintersinger / convert_lichee_outputs.py
Created September 18, 2019 20:44
Convert LICHeE outputs
import re
import sys
import os
import argparse
import json
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'lib'))
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import common
import inputparser
#!/usr/bin/env python2
import subprocess
def move_window(oldpos, newpos):
return subprocess.check_output(['tmux', 'move-window', '-s', str(oldpos), '-t', str(newpos)])
def main():
output = subprocess.check_output(['tmux', 'list-windows'])
lines = [l.strip() for l in output.split('\n') if l.strip() != '']
frags = [line.strip().split(': ', 1) for line in output.split('\n') if line.strip() != '']
from __future__ import print_function
import sys
from collections import defaultdict
def parse(fn):
loci = set()
with open(fn) as F:
for L in F:
L = L.strip()
http://prune.da-shiz.net/uploads/jeff/sbf-battlefield-vietnam-world-tournament-recordings/20IDvs.sbf_-_Jun.10.mp3
http://prune.da-shiz.net/uploads/jeff/sbf-battlefield-vietnam-world-tournament-recordings/Pinc.vs.pfg_-_Apr.27.mp3
Do proportion of SVs plots
See what BAF and logR are of my BP clusters that don't have SVs -- are they subclonal? Do they have smaller deviations?
We should report these nulls back to PCAWG-6 -- now?
Can we use our results to help PCAWG-6 -- ask them to look for non-consensus SVs that one or two methods called around our wll-supported BPs
Send list of BPs to PCAWG6, along with CN states upstream and downstream
Send this list to group, which can check BAF and logR
Include TRAs, but throw out small SVs
Geoff: Anything < 500 kb is often missed by CN methods for duplications or deletions
function fetch_packages(db, on_done) {
// Your code goes here. You must return an array of objects that looks like
// this (which you can infer from looking at what fields we reference in
// index.html):
//
// [ { sent_on: '2016-06-27 14:31:03',
// due_on: '2016-06-28 08:00:00',
// received_on: null,
// shipper_name: 'Nils Olav',
// receiver_name: 'William Windsor',
CnvParser
Caller: main()
Then: grouper.add_cnvs(cn_regions)
CnvFormatter
MultisampleCnvCombiner
Called by grouper.add_cnvs()
Segmenter