Created
April 10, 2024 17:57
-
-
Save karthikscale3/c13a5b7c53820ee297badd3acaa26d58 to your computer and use it in GitHub Desktop.
Langtrace and Signoz setup - FastAPI/LangChain/RAG
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from fastapi import FastAPI | |
from langchain_community.vectorstores.faiss import FAISS | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts.chat import ChatPromptTemplate | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
from openai import OpenAI | |
from langtrace_python_sdk import langtrace | |
langtrace.init(write_to_langtrace_cloud=False, debug_log_to_console=True) | |
app = FastAPI() | |
client = OpenAI() | |
@app.get("/") | |
def root(): | |
vectorstore = FAISS.from_texts( | |
["Langtrace helps you ship high quality AI Apps to production."], embedding=OpenAIEmbeddings() | |
) | |
retriever = vectorstore.as_retriever() | |
template = """Answer the question based only on the following context:{context} | |
Question: {question} | |
""" | |
prompt = ChatPromptTemplate.from_template(template) | |
model = ChatOpenAI() | |
chain = ( | |
{"context": retriever, "question": RunnablePassthrough()} | |
| prompt | |
| model | |
| StrOutputParser() | |
) | |
res = chain.invoke("How is Langtrace useful?") | |
return {"response": res} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment