This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SquarePad: | |
def __call__(self, image): | |
w, h = image.size | |
max_wh = np.max([w, h]) | |
hp = int((max_wh - w) / 2) | |
vp = int((max_wh - h) / 2) | |
padding = (hp, vp, hp, vp) | |
return torchvision.transforms.functional.pad(image, padding, 0, 'constant') | |
class ArtPeriodDataSet(Dataset): | |
def __init__(self, dataframe, img_dir, transform=None, target_transform=None): | |
self.dataframe = dataframe.copy() | |
self.img_dir = img_dir | |
# eliminate non-existing files | |
print("Eliminate non-existing files") | |
for idx, row in tqdm(dataframe.iterrows(), total=len(dataframe)): | |
path = f'{img_dir}/{row["ID"]}.jpg' | |
if not os.path.exists(path): | |
self.dataframe.drop(idx, inplace=True) | |
print("Dropping", path) | |
# encode brands | |
self.label_encoder = LabelEncoder() | |
labels_encoded = self.label_encoder.fit_transform(self.dataframe["period"]) | |
self.dataframe["period_encoded"] = labels_encoded | |
self.classes = self.label_encoder.classes_ | |
self.img_dir = img_dir | |
self.transform = transform | |
self.target_transform = target_transform | |
def __len__(self): | |
return len(self.dataframe) | |
def __getitem__(self, idx): | |
img_path = f'{self.img_dir}/{self.dataframe.iloc[idx]["ID"]}.jpg' | |
image = PIL.Image.open(img_path).convert('RGB') | |
label = self.dataframe.iloc[idx]["period_encoded"] | |
if self.transform: | |
image = self.transform(image) | |
if self.target_transform: | |
label = self.target_transform(label) | |
return image, label |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment