Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
専有面積から自由が丘の賃貸料を予測する
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"import sklearn\n",
"from sklearn.linear_model import LinearRegression"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# suumoから取ってきた自由が丘の賃貸料データを読み込む\n",
"df = pd.read_csv(\"jiyugaoka.csv\", header=None)\n",
"\n",
"# Priceは賃貸料、Spaceは専有面積\n",
"df.columns=[\"Price\",\"Space\"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Price</th>\n",
" <th>Space</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>45000.0</td>\n",
" <td>10.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>45000.0</td>\n",
" <td>12.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>55000.0</td>\n",
" <td>18.56</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>55000.0</td>\n",
" <td>18.56</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>55000.0</td>\n",
" <td>18.56</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Price Space\n",
"0 45000.0 10.00\n",
"1 45000.0 12.00\n",
"2 55000.0 18.56\n",
"3 55000.0 18.56\n",
"4 55000.0 18.56"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# 線形回帰モデルを生成\n",
"lreg = LinearRegression()\n",
"\n",
"# Space(専有面積)を説明変数\n",
"X = df.drop(\"Price\",1)\n",
"\n",
"# 賃貸料を目的変数\n",
"Y = df.Price"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# データを学習させる\n",
"lreg.fit(X,Y)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.874990914238\n"
]
}
],
"source": [
"# モデルの評価\n",
"print(lreg.score(X, Y))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 70040.66541169])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 専有面積が16.5平米の賃貸料を予測\n",
"lreg.predict(16.5)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x10c87b4a8>"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEACAYAAACd2SCPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4nHWd9/H3N23SDKceMG21h6RAS9u1COWiVMo+pqUN\nbVVEdxFwXVuMiMsGUTwA+ly0xQfXsuuzggiI28dWkRaVFQFRAgthL+qWlGOrSaGoCYRDMwpUwfSY\n7/PH7zfNnWTSppO0M2k/r+uaK/d85577/s1Nme/8jre5OyIiIvurKN8FEBGRgUkJREREcqIEIiIi\nOVECERGRnCiBiIhITpRAREQkJ71KIGY21Mx+YmaNZvZbMzvdzIabWa2ZPWdmD5jZ0MT+N5rZZjN7\nxsxOTsQXmdnz8T2fSMSnm9mG+Nq3EvEezyEiIvnV2xrIDcD97j4FeA+wCbgKeMjdTwQeBq4GMLMF\nwPHuPhG4BLg1xocD1wCnAacDSxIJ4RbgU+4+CZhkZmfHeNZziIhI/u0zgZjZ0cDfuvv3Adx9l7tv\nBT4ErIq7rYrPiX9/EPd9HBhqZqOAs4Fad9/q7m8CtcB8MxsNHO3u9fH9PwDOTRwreY5MXERE8qw3\nNZDjgD+a2ffN7Ckzu83MjgBGufsWAHd/DRgZ9x8DvJR4f0uMdY2/nIi3ZNmfLOco258PJyIiB05v\nEshgYDrwHXefDrxNaFrqaQ0Uy/Lcs8TZR1xERArY4F7s0wK85O5PxOd3ERLIFjMb5e5bYjNUa2L/\ncYn3jwVeifHKLvFH9rI/wGs9nKMTM1PCERHJgbtn+xHfK/usgcQmpJfMbFIMnQX8FrgHWBxji4Gf\nx+17gE8AmNlM4M14jAeAeXFE13BgHvBAbJr6s5nNMDOL700eK3OORYl4tnIW/GPJkiV5L8OhUs6B\nUEaVU+Us9Edf9aYGAvBZ4EdmVgz8HrgIGAT82Mw+CbwInBe/yO83s4Vm9gKhueuiGH/DzL4GPEFo\nolrmoTMd4FJgJVBKGO31qxhfnu0cIiKSf71KIO7+LGH4bVdze9i/pof4SkKi6Bp/EpiWJf56T+cQ\nEZH80kz0g6iysjLfReiVgVDOgVBGUDn7m8pZWKw/2sHyzcz8UPgcIiIHk5nhB7ITXUREJBslEBER\nyYkSiIiI5EQJREREcqIEIiIiOVECERGRnCiBiIhITpRAREQkJ0ogIiKSEyUQERHJiRKIiIjkRAlE\nRERyogQiIiI5UQIREZGcKIGIiEhOlEBERCQnSiAiIpITJRAREcmJEoiIiORECURERHKiBCIiIjlR\nAhERkZwogYiISE6UQEREJCdKICIikhMlEBERyUmvEoiZNZnZs2b2tJnVx9hwM6s1s+fM7AEzG5rY\n/0Yz22xmz5jZyYn4IjN7Pr7nE4n4dDPbEF/7ViLe4zlERCS/elsDaQcq3f0Ud58RY1cBD7n7icDD\nwNUAZrYAON7dJwKXALfG+HDgGuA04HRgSSIh3AJ8yt0nAZPM7Oy9nUNERPKvtwnEsuz7IWBV3F4V\nn2fiPwBw98eBoWY2CjgbqHX3re7+JlALzDez0cDR7l4f3/8D4NwezpGJi4gcUtLpNOvXryedTue7\nKL3W2wTiwANmtt7MPhVjo9x9C4C7vwaMjPExwEuJ97bEWNf4y4l4S5b9s52jrJflFREZMFavvpPy\n8snMm/cZyssns3r1nfkuUq8M7uV+Z7j7a2ZWBtSa2XOEpJKNZXnuWeLsIy4icshLp9NUV19KW9sj\ntLWdBGyguno2c+fOoayssH8z9yqBxF//uHvazO4GZgBbzGyUu2+JzVCtcfcWYFzi7WOBV2K8skv8\nkb3sD/BaD+foZunSpXu2Kysrqays7GlXEZGC0dTURElJRUweACdRXFxOU1NTvyeQuro66urq+u14\n5r73H/tmdgRQ5O5vmdmRhL6LZcBZwOvuvtzMrgKGuftVZrYQ+Gd3f7+ZzQS+5e4zYyf6E8B0QtPZ\nE8Cp7v6mmT0OXAasB34B3OjuvzKz5YlzXAkMd/erspTR9/U5REQKUTqdprx8Mm1tjwChBpJKzaa5\nedMBr4GYGe6erRWoV3pTAxkF/MzMPO7/I3evNbMngB+b2SeBF4HzANz9fjNbaGYvAG8DF8X4G2b2\nNULicGBZ7EwHuBRYCZQC97v7r2J8ebZziIgcKsrKylix4maqq2dTXFzOzp3NrFhxc8E3X0EvaiAD\ngWogIjLQpdNpmpqaqKioOGjJo681ECUQEZHDVF8TiJYyERGRnCiBiIhITpRAREQkJ0ogIiKSEyUQ\nERHJiRKIiIjkRAlERERyogQiIiI5UQIREZGcKIGIiEhOlEBERCQnSiAiIpITJRAREcmJEoiIiORE\nCURERHKiBCIiIjlRAhERkZwogYiISE6UQEREJCdKICIikhMlEBERyYkSiIiI5EQJREREcqIEIiIi\nOVECERGRnCiBiIhITpRAREQkJ0ogIiKSk14nEDMrMrOnzOye+LzCzNaZ2XNmttrMBsd4iZmtMbPN\nZvY/ZjY+cYyrY7zRzKoS8flmtsnMnjezKxPxrOcQEZH8258ayOVAQ+L5cuCb7n4i8CZQHePVwOvu\nPhH4FnA9gJlNBT4KTAEWADdbUATcBJwN/A1woZlN3sc5REQkz3qVQMxsLLAQ+I9EeA5wV9xeBZwb\ntz8UnwP8NO4HcA6wxt13uXsTsBmYER+b3b3Z3XcCa+Ixsp3jw73+ZCIickD1tgby78CXAAcws2OB\nN9y9Pb7eAoyJ22OAlwDcfTew1cxGJOPRyzHWNd4CjOnhHO/q/UcTEZEDaZ99Cmb2fmCLuz9jZpWZ\ncHwkeeK1rnwv8WxJLLN/T+foZunSpXu2Kysrqays7GlXEZHDUl1dHXV1df12vN50Ss8CzjGzhUAK\nOJrQtzHUzIpiDWEs8ErcvwUYB7xiZoOAoe7+hpll4hmZ9xgwvmvc3f9oZsN6OEc3yQQiIiLddf1x\nvWzZsj4db59NWO7+FXcf7+7HARcAD7v7x4FHgPPibouAn8fte+Jz4usPJ+IXxFFaE4ATgHpgPXCC\nmZWbWUk8R+ZYD/dwDhERybO+zAO5CrjCzJ4HRgArYnwF8A4z2wx8Lu6HuzcAPyaM5LofuNSD3UAN\nUAv8ltDRvmkf5xARkTwz9x67FQYMM/ND4XOIiBxMZoa7Z+uf7hXNRBcRkZwogYiISE6UQEREJCdK\nICIikhMlEBERyYkSiIiI5EQJREREcqIEIiIiOVECERGRnCiBiIhITpRAREQkJ0ogMqCl02nWr19P\nOp3Od1G6KeSyifQHJRAZsFavvpPy8snMm/cZyssns3r1nfku0h6FXDaR/qLVeGVASqfTlJdPpq3t\nEeAkYAOp1GyamzdRVlamson0glbjlcNSU1MTJSUVhC9ogJMoLi6nqakpf4WKCrlsIv1JCUQGpIqK\nCnbsaAI2xMgGdu5spqKiIn+Figq5bCL9SQlEBqSysjJWrLiZVGo2xxwznVRqNitW3FwQTUSFXDaR\n/qQ+EBnQ0uk0TU1NVFRUFNwXdCGXTQT63geiBCIiACxYsIC6ujoqKyv55S9/me/iyEGgBIISiEhf\nmQ0GSoCxQAuwDff2/BZKDjiNwhKRPlmwYAEheawDno9/S2NcpGeqgYgc5lKpFNu2jSMkj4yJlJa2\n0NbWlq9iyUGgGohIgWhsbGTVqlU0Njbmuyj7pbKyktBs1THsGF6OcZGeqQYi0g8uu+xz3HTTbcA4\n4CVqai7m29++Id/F6jWzIqAUGAO8jPpADg+qgYjkWWNjY0we64DngHXcdNP3BlRNxL2d+fPfR2lp\nC/Pnv0/JQ3plcL4LIDLQ1dfXE2oeHUuXwFjq6+uZMmVK/gq2n/pz6O7atWupra2lqqqKWbNm9dtx\npbCoBiLSRzNmzABeonMfQkuMH36qqhZy5pnzuPba1Zx55jzOPnthvoskB4gSiEi/2AnMBCbFvzvz\nW5w8Wbt2LQ8+WEdySHBtbR1r167Nb8HkgNhnAjGzIWb2uJk9bWYbzWxJjFeY2Toze87MVluYiYSZ\nlZjZGjPbbGb/Y2bjE8e6OsYbzawqEZ9vZpvM7HkzuzIRz3oOkUISmrCOA54Evhr/Tojxw0ttbS1h\nMmKyOW9MjMuhZp8JxN23A7Pd/RTgZGCBmZ0OLAe+6e4nAm8C1fEt1cDr7j4R+BZwPYCZTQU+CkwB\nFgA3W1AE3AScDfwNcKGZTY7H6ukcIgWjowlrJ7Ao/j08m7CqqqrINiQ4xOVQ06smLHf/a9wcQuh4\nd2A2cFeMrwLOjdsfis8BfgrMidvnAGvcfZe7NwGbgRnxsdndm919J7AmHoP43uQ5Prw/H07kYJgy\nZQrTpp1IaLqaCMxk2rQTB1QHen+ZNWsWVVWVJK9FVVWlOtIPUb1qEoq1hCeB44HvAL8D3vSOsX4t\nhAHkxL8vAbj7bjPbamYjYvx/Eod9OcYss3/iWDPM7FjgjS7neNf+fTyRA6+xsZGNG58D7gC2AkPZ\nuPFjNDY2HpZJ5IEH7tcorMNErxJI/BI/xcyOAX5GaIbqtlv8m21Siu8lnq0WlNm/63t6nC24dOnS\nPduVlZWaRSsHTccw3nMT0YE3jLc/zZo1S4mjANXV1VFXV9dvx9uvTml3/7OZPUqonw4zs6KYXMYC\nr8TdWgj/N71iZoOAoe7+hpll4hmZ9xgwvmvc3f9oZj2do5tkAhE5mDoP4z2Jw30YrxSurj+uly1b\n1qfj9WYU1jvMbGjcTgFzgQbgEeC8uNsi4Odx+574nPj6w4n4BXGU1gTgBKAeWA+cYGblZlYCXJA4\n1sM9nEOkYEyZMoWamotJDuOtqbn4sK19yOFjn2thmdk0Qgd2UXzc6e7XxSSwBhgOPA183N13mtkQ\n4IfAKcCfgAtipzlmdjVhJNVO4HJ3r43x+cAN8fgr3P0bMZ71HFnKqLWwJO8aGxupr69nxowZSh4y\nIOiGUiiBiIjkQospiohIXiiBiIhITpRAREQkJ0ogIiKSEyUQkUPcggULSKVSLFiwIN9FkUOMRmGJ\nHMLCAtYlhHm4LehWtZKkUVgiklWocZSQvDcHlKomIv1GNRCRQ1QqlWLbtnGE5JExkdLSFtra2vJV\nLCkgqoGISFZhzaPu9+bQQqPSX1QDETmEhTsxlBLunPAy6gORJNVARKRH7u3Mn/8+SktbmD//fUoe\n0q9UAxEROUypBiIiInmhBCIiIjlRAhERkZwogYiISE6UQOSw19jYyKpVq2hsbMx3UUQGFCUQOaxd\ndtnnmDr1VBYv/jpTp57KZZddnu8iiQwYGsYrh63GxkamTj2VsEbUSYSZ2jNpaHiy3+5pnk6naWpq\noqKigrKysn45pkh/0TBekRzV19cD4wjJg/h3bIz33erVd1JePpl58z5DeflkVq++s1+OK1IoVAOR\nw9aBrIGk02nKyyfT1vbInmOnUrNpbt6kmogUDNVARHI0ZcoUamouBmYCk4CZ1NRc3C/NV01NTZSU\nVJCs3RQXl9PU1NTnY4sUCtVA5LDX2NhIfX09M2bM6Ne+D9VApND1tQaiBCJygKxefSfV1ZdSXFzO\nzp3NrFhxMxdeeH6+iyWyhxIISiBSuDQKSwqZEghKICIiuVAnuhx0a9euZcmSJaxduzbfRRGRPFIN\nRPZLVdVCHnywDhgLtFBVVckDD9yf51KJSC4OeA3EzMaa2cNm1mBmG83sszE+3Mxqzew5M3vAzIYm\n3nOjmW02s2fM7OREfJGZPR/f84lEfLqZbYivfSsR7/EccvCtXbs2Jo91wPPAOmpr61QTETlM9aYJ\naxdwhbtPBd4L/LOZTQauAh5y9xOBh4GrAcxsAXC8u08ELgFujfHhwDXAacDpwJJEQrgF+JS7TwIm\nmdnZMZ71HJIftbW1hJpHcub2mBgPw2EvueQS5syZw49+9CMgdCKvX7+edDrdL2Xo7+OJSB+4+349\ngLuBucAmYFSMjQYa4/atwPmJ/RuBUcAFwC2J+C3A+fG9DYn4nv2ynGNTD2VyOfAee+wxh5TDsw4e\n/6Z8yZJlXlNzeXxtYvw72EeMGOmp1AgfOnS6p1Ij/I471vTp/HfcsaZfjydyuIvfnfudBzKP/eoD\nMbMKoA54N/CSuw9PvPYndz/WzO4F/sXdfx3jDwJXArOBIe7+9Rj/38BfgUfj/lUxfibwZXc/x8ze\nyHaOLOXy/fkckpt0Os3IkWOAwcAY4GVgF0OGHMH27duBx+lYEuR0wEguE9KXiXSamCfS//raBzJ4\nP050FPBT4HJ3f8vMevrG7loYAzxLnH3E98vSpUv3bFdWVlJZWbm/h5B9aGpq4sgjp/L2298BaoEq\n4DJgK7CTzk1bZcAQsi3lkcsXfmZpkLa2/jmeyOGorq6Ourq6fjterxKImQ0mJI8fuvvPY3iLmY1y\n9y1mNhpojfEWwhKnGWOBV2K8skv8kb3sD/BaD+foJplA5MCoqKigvf0l4GhgGaGm0YT7bmBHfJ6p\ngaQJvw06Yjt3NlNRUZHzuXfsaNrn8dauXUttbS1VVVXMmjUrp3OJHKq6/rhetmxZ3w7Ym3Yu4AfA\n/+0SWw5cGbevAr4RtxcCv4jbM4F1cXs48DtgaGJ7WHztcWAG4RvnfmB+lnNcmTlHlvL1X6Og7NUd\nd6zxkpKhDsc7HOEwxIuLj/KqqgWx7+OERB9ImadSI/yYY07p1z6Qno43b96CTv0wVVUL+nQ+kUMd\nfewD6U3ymAXsBp4BngaeAuYDI4CHgOeABzPJIL7nJuAF4FlgeiK+GNhMGAP6iUT8VGBjfO2GRLzH\nc3Qp4wG9yNJZQ0ODl5Qc5XCLQ6vDs55KjfDHHnvMP/3pT/vs2bP99ttvd3f31tZWr6+v99bW1n45\nd0/H66mD/7HHHuuX84ocivqaQPbZhOXua4FBPbw8t4f31PQQXwmszBJ/EpiWJf56T+eQ/HnrrbdI\npSaxY8dnYqSM4uJySkpK+O53v9tp37Kysn7to+jpeHsbYqymLJEDQ0uZyH7r3B8Bfe3f2JfFixdz\n7LHHsnjx4h73qaqqInSndZQJXo5xETkQtJSJ5ORgLVVuVkIY6xGWToEduO/Kuu/ZZy+ktraOzBBj\nLbMisndajRclkHzp76XKux5v8eLFrFr1Y7recnbRoo+ycuXKrMfQKCyR3lMCQQmkkPU2yWRqNCUl\noXlsxYqbqam5lNdfP5Yw5iJjIiNGvM6f/vSnA152kUOdlnOXftXY2MiqVatobGzs87FWr76T8vLJ\nzJv3GcrLJ7N69Z1Z90un01RXX0pb2yNs3fokbW2PUF19KfPmzSNbv8YZZ5yhtbBECkFfhnAVygMN\n4+2koaHBV65c6Q0NDfv1vo71rCY5pLym5rM5l6G1tdVTqRGdhtWmUiP2DL9NDsetr6/3oUOnx/3C\n45hjTvH6+nqHQV3ml5jWwhLpJxzoeSAD4aEE0iHXJNDQ0JB1HsX+JqGMvSWFrosi3nrrbXtNNosW\nLfJhw4Y5DO5xHxHZf0ogSiB79CUJrFy5MiYdTzwm+sqVK/f53scee8yvueaaTpP2eqqBNDQ0ZI1n\nkkhPs8z3lpBEJDd9TSC9XkxRCl99fT1hWbHkZLqx1NfXM2XKlL2+d8aMGcBLdF7PqiXGu2tsbKS+\nvp7bblvBr3/9BDCWa6/91z1DZ8vKylix4maqq2d3Gur71ltvdVsUsa1tOOl0mubmTd063DOd8Ecd\ndVSv1sISkYOoL9mnUB6oBuLufW+Gqqn5bKe1pHpq/upoJhu7z+VDxowZ44CPGTPG3bPXTGC4l5YO\n69Yc1bWpq6bms/26tpbI4Q41YSmBJPU2Cbi733vvvV5dXe333nvvnli2Dvjbb7/d58+f79dee22X\nNae+EM/jiccJ/oUvfMHdPdEBnrnJlLm7+9e+dp2HhRhPcRjhsKZbc9TemsD6c20tkcOZEogSSDd7\nG4XV0NDg1113nY8cOabTl/u0aSe7e/fFCt/5zvFdkgCJpPG9rDWQ733vez5+/Pisr40fP95bW1u9\ntHSYw488sxjjkCGdayDq8xA58JRAlEC6Wb58uZ988sm+fPlynzNnjpeUlPicOXMSTU+js365f/GL\nX+7UZDR37rws+5UkYq0Oxd55mO0gb21t7ZJoMo8TMv9g/d3vPjnun1kWvqTT8uv7GgYsIn2nBHIY\nJ5CRI0c64CNHjtwTO+KIYd2ajcL2kMQXf3XWL/eiopIuycKy7DfWIXOOExIJZaRDiZ90UqjJ7K0G\nEprBShxKO9VCuvaf7Ov+HyLSN0ogh2kCyda/sHz58qxf2rDc4dpEMrg3636p1IQuyWJklv1KY+xn\nsZYxxGFC/EuXMlqX2knoAznttNMchmdNYtdcc02nY/T3/UREpENfE4jWwhqARo0aRWvrX+i6yGBR\n0Xba24+n69pRcBRwB+G+XZn3TAZeJLNy7eTJx9Pc/AptbY90Oma4geTWPfvBNuBC4FeEFXI3EG4X\ns5vx48fT3Nzcqazl5eW8+OKLe15rbGxk6tST46uDun2Gxx57UIsgihwkWgvrMNTa2kq2mye1t7eT\nbe2o8IW/Mz5mEpLKi0Ab8AL33vtjGhs3smLFzaRSsznmmOmkUrOpqbmYkpI2QgL6HbCT6upqUqlf\nEe6L/hwwEigBrFvyAGhubsbd97wW5qpUAGcR7qOeKc9MqqoqlTxEBhDVQAYgMwNSdP31HhJCETCE\nzjWG4xPb7wHOA14DbgO2c8UVV/DNb34T6Lx6LsD48ZPYtu07wDzgVVKp2Tz44D2cddZCtm8vBVqB\n0aRSO2hu3rTPZd1DDSRTE/oLcD1wH7ff/gP+4R/+oV+uj4j0jmogh61tJH+9h+cQksenCbWGNsAJ\nt6dvi68/DXwFuJEwa72In/70p3uOWlZWxmmnnUZZWRlNTU0UF08APgaUASdRXFzOCy+8QGnpCcCW\nePxXKS4up6mpaZ+lnjJlCjU1F8cyXwQ8SE1NjZKHyACkBDIAjRs3Digl1EJeiH9L42MboWbxVoxD\nUVER48ePj693bd5q593v7nY7egCeeuoZ/vKXTXS9de2MGTP6dEvbb3/7BhoanmTlyq/S0PAk3/72\nDb396CJSQNSEVaDS6TRPP/00AKeccgpAp6alkSNHERJCsqlqCzCK0DldAuxg0KAidu3aDsDgwUPY\nvXtQl/cMJpU6ulvzUzqdprx8Mm1tVwLLCX0um7n11hu45JKLWbr0Wq677t8YMmQC7e0tB+yWtiJy\n4PS1CSvvQ3D748EhNoz3jjvWeEnJ0Dj89QgvKkp5cfExfsQRJ/mQIcP81ltv8zvuWBOH0WYeaxLD\ndvHx48f7FVdc0em49957r0+YMCHuf6TDFd7TDO/OM8FbHeodKvz44yf5vHkL4nnC8N3KyjkH8/KI\nSD9Bw3gPrRpIxy//zHDaOmAhXTvMb731BiZMKOeccy5i+/a/AhOAZkLN4w1gB+7te447bdp0fvOb\nTcBoQgd6x/FSqdlZayBjx05kx47/Tpy3ktCXsht4Ag2/FRnY1Il+iGlqaqKoKLkk+5F0X6J9Ipdf\n/kXGjRtHUdE24GfAd4G7CENjfwWUkkqFPpD77rsvJo91wO+BpcBMjjjiJFKp2axYcXO30VNlZWWc\nccZ04L3AdGA2cAuhKauUrkOIa2tr+/dCiEjBUwIpMBUVFeze/SIdHdRv03GfDsjcp8N9NG+99RYr\nVtwMLCCMlPo74GZCTWEM27aFkVl33303neeNfBkYzdy5E2hu3tRj38UXvnAF0A58EdgETKGj76Rz\nZ3xVVVXfP7yIDChKIAXmoYceZufOzBDdE4D30zEB8D2EmsCV7NjxEkcddRQXXng+Q4Y4IcncBZxP\n5ku9tLQUgHPPPZfuEwxf4+KLL97rvI0PfOADTJs2GfgUcAYwk2nTTqSqai6aACgi6gMpIB39H58D\nVhKajAAeBf4NMOCdwBuUlAxl164W2tvbGTRoELt3t9N1VFayD+Skk05h48bn9rw+bdqJbNjwdNYy\ndL0r4H333cfdd9/Nueeeywc+8AEA1q5dS21tLVVVVUoeIgNUX/tAlEAKyPr165k37zNs3Xo7ndet\nqiM0U/07cByho3whYQDWOELtYhulpUPYtm0bpaWl/OQnP+n2pZ8tESStXn0n1dWXUlJSwY4dTRqa\nK3KIO+AJxMxWAB8Atrj7STE2HLgTKAeagI+6+9b42o2Eb7u3gcXu/kyMLwK+SvjWu87dfxDj0wk/\nt0uB+939c/s6R5YyDugEkrzv96mnnhlHYK0AvkdHjWIXUEyogbwSn3ceCVVUtJ3du3cnRlyNBVp6\nrG10LUPn0V/ZR2eJyKHjYIzC+j5wdpfYVcBD7n4i8DBwdSzMAuB4d58IXALcGuPDgWuA04DTgSVm\nNjQe6xbgU+4+CZhkZmfv7RyHmtWr76S8fDLz5n2GU089k+rqjzNo0CzgF4QO7D8QlhEZBEwidGi3\n09Niil/60pWJEVfPA+vYuPE57rvvvr2Wo6mpiZKSik7H7O3yJCJymOrNZBFCLWBD4vkmYFTcHg00\nxu1bgfMT+zUSpkZfANySiN9C6O0dDTQk4nv2y3KOTXspX58m0+RDa2urP/DAA93uuhfuzjfEw02f\nhjiM8XDXv1IPd+/L3FY2230/LN4Uqvt9Nqqrq/dZHt0BUOTwQh8nEuY6Cmuku2+J39yvEdb0htDe\n8lJiv5YY6xp/ORFvybI/MXkkz3HItKNkah0f+chnaWsbQeeaxDuB8YQK3AmEOR4vE5ZfHxRf/xHZ\nF1NsZ8iQzCXtPMw2jMTqWVlZWbfl3LPNDxERyRjcz8fr2pZmhD6PbG1se4sfstLpNIsXXxJneL8T\nOJHwJZ/py3iV0En+dtweQsidG4A04fLMA6bF2AuEy9gen29l8uTj2bRpJskRV9k6zbu68MLzmTt3\nTrdRWCIi2eSaQLaY2Sh332Jmowk3hYDw03dcYr+xhB7fFsLstmT8kb3sD/BaD+fIaunSpXu2Kysr\nqays7HHfgy055PUjH/koO3a8g45axy2E2d7HEW7atBtYQpgUeBShdvEuQjIxQuf6q0ALRUXHsWxZ\nNV//+jcrswdWAAAMWUlEQVQpLp7Ozp3Ne0ZO7WvEVU/KysqUOEQOUXV1ddTV1fXfAXvTzkW4hdzG\nxPPlwJVx+yrgG3F7IfCLuD0TWBe3hxO+HYcmtofF1x4HZhC+He8H5mc5x5WZc/RQvgPRPNgvOhYe\nnOgwOPZlDO/SfzHM4QGH8Yn7iHfcZxzudBga33uSwwgP9zlPeWtrq+4bLiI54UAvpmhmdxBqD8cS\n1gtfAtwN/IRQe3gROM/d34z73wTMJ7TBXOTuT8X4YjqG8f4f7xjGeyqdh/FeHuMjgB9nO0eWMvq+\nPkc+rF27ljPPnEfHfI5J8ZWvAf8EjABeJ9RCphBy7qXAtwjNWBAGwWVe+yfgPwgVtT8waVI5zz3X\neHA+jIgccjSRkMJNIEuWLOHaa1cThtNCSCAthITyTuAfCbPMxxI6yo8m5OipwGbCQorHEabBvEnI\nsaMJrXzbKcTPLCIDh1bjLWBhgcHkiKjz6Bg9dQbw3/H574BvEta82gA0EPpCthM6zjO3o3XgDwwZ\nYpSUlHDWWWcdpE8iItKdaiAHWGXlXB599Nd0zCjfTRgxFe4YGJ4XEbqZWuL2BMIEwrbEkZYTVtEN\ns8477uvRec0rEZHeUg2kgE2dOpVHH/0v4BhCQriFUKtYAPyV0LdxD/AQoZnKCV1NvwN2UVT0LsLy\nJRMIyQMy9wMJq7ysA0oZNWrUPmeai4j0N9VADhCzwYRaxjZC38XRwF/oqInsiK8n70/uwGLgesJQ\n3dmEYbsfo/MdCWcTJuqXEZLJC0CqV2teiYhkqAZSANLpNOvXryedTgOh5hGSw6cJU22GERY/bCNM\nyD+S0IzVRvjybyMkj2LCKKwyQrIoJySYUcD7CDPTZxJGNWcmF74MzKG3a16JiPSX/p6JftjITA40\nG8T119+wZwn0r3zlCzQ2NhJqBo8SRlulCVNcfk0Yybw9HmU08EdCP8hHCc1Zb8fXNhDucf428Gfg\n+xQX/yM7d7YRbkn7PTpqLv8V3zOGu+++e78mDoqI5EpNWDmoqlrIgw/W0dGRnWxemkmoUaQINZDb\ngA8T1rTKrFM1mNCElSnzGEKS2UFRUQnt7Zmhuu8gJJhjKCnZxo03/iuf//xVtLUdDzxFSDzPdjr3\n6NFDefXVVw/wFRCRQ4GasA6ytWvXxuSxjtCRPYnOiyG+i47FDm8j1DZ+Rmhyao7xv8b9M0uGNBOS\nijFnznsJcz6KCUmoGNjF3//9+7nkkovjgoe/IzRvFdF5QcV2XnvttQP0yUVEOlMC2U+1tbV03Iuj\ngtCnkVz59lXCYofthATRTlgQcSjhcv+MsMbVIkLT1C5CDWQ7VVVncfnllxMSzM+B2+Pfv3LhhRcC\nYcHD5uZNjBu3k9DPspzQP7IcKGLixIkH8NOLiHRQE9Z+6r48yfWEPol3EZqb2oD1dDQrTadjtFVm\nSfZjgT/tiY0aNZy77rprz73Fe3v/crMi9nYfdBGRvdFSJhz8PpBhw45l69Y2Or6430tYln0lHSvY\nJ4frnkCY5/FdoIYw4/wdhAWGd7Jy5UoWLVrU6Ry9XU130qRJbN68mYkTJ/L888/3uJ+ISFdKIBz8\nBDJz5kwef/xpwg0U/xNYSxhtNZHQN9FIaLZ6i1ADeZLQX/LJuF8LoQP+XOA2GhqeZMqUKQet/CIi\noE70vNi8eTNhBNRP6LhnR+augJsJfSS7CB3j34/vmgK088EPTiPUUkqA26ipuVjJQ0QGJCWQLLpO\nDOz6/IMf/CAhAXyeUOv4NKG56oOE5qtvAL8k1EJmA+8BZjJz5nTuuednNDQ8xcqVX6Wh4Um+/e0b\nDvKnExHpH2rC6mL16juprr50z8TA6up/ZMWKH+55nrnjX8dSJcmlSEoxa+foo6fy5z9vItRSxhDm\ndOxQB7eIFBT1gdB/CSSdTlNePpm2tkcIo6jqCDdZ7JgomErNprl5E2VlZSxevJh7772XGTNmMGPG\nDKqqqpg0adKee4pfdtll/PKXv2TBggWsWbOmz+UTEelPfU0gWsokoampiZKSCtraMhMDjyTcELFj\nomBxcTlNTU2UlZWxcuXKrMfJ3FNcSUNEDmXqA0moqAjNVB0TA9+m60TBnTubqaioyEPpREQKixJI\nQllZWVwqZDbHHDOdVOrvqKm5OPF8NitW3LynhiEicjhTH0gW6XR6Tz9GWVlZt+ciIocCdaJTmDeU\nEhEpdJpIKCIieaEEIiIiOVECERGRnCiBiIhITpRAREQkJ0ogIiKSEyUQERHJScEnEDObb2abzOx5\nM7sy3+UREZGgoBOIhZt+3wScDfwNcKGZTc5vqXJXV1eX7yL0ykAo50AoI6ic/U3lLCwFnUCAGcBm\nd292953AGuBDeS5TzgbKP6qBUM6BUEZQOfubyllYCj2BjCEsh5vREmMiIpJnhZ5Asq3RokWvREQK\nQEEvpmhmM4Gl7j4/Pr8KcHdf3mW/wv0QIiIF7JBdjdfMBgHPAWcBrwL1wIXu3pjXgomISGHf0tbd\nd5tZDVBLaG5boeQhIlIYCroGIiIihavQO9H3qlAnGZrZWDN72MwazGyjmX02xoebWa2ZPWdmD5jZ\n0HyXFcJ8GzN7yszuic8rzGxdLOdqM8t7TdXMhprZT8ys0cx+a2anF+L1NLPPm9lvzGyDmf3IzEoK\n4Xqa2Qoz22JmGxKxHq+fmd1oZpvN7BkzOznP5bw+/nd/xszuMrNjEq9dHcvZaGZV+Spj4rUvmlm7\nmY1IxArmWsb4ZfF7c6OZfSMR3/9r6e4D8kFIfi8A5UAx8AwwOd/limUbDZwct48i9ONMBpYDX47x\nK4Fv5LussSyfB24H7onP7wTOi9u3AJcUQBlXAhfF7cHA0EK7nsC7gN8DJYnruKgQridwJnAysCER\ny3r9gAXAL+L26cC6PJdzLlAUt78B/Evcngo8Hf89VMTvA8tHGWN8LPAr4A/AiAK9lpWELoHB8fk7\n4t8puVzLgVwDKdhJhu7+mrs/E7ffAhoJ/7g+BKyKu60Czs1PCTuY2VhgIfAfifAc4K64vQr48MEu\nV5KZHQ38rbt/H8Ddd7n7VgrwegKDgCNjLSMFvALMJs/X090fA97oEu56/T6UiP8gvu9xYKiZjcpX\nOd39IXdvj0/XEf5fAjgHWBP/PTQBmwnfCwe9jNG/A1/qEiuoawn8E+GHwq64zx8T5dzvazmQE8iA\nmGRoZhWEXwHrgFHuvgVCkgHK8leyPTL/6B3AzI4F3kj8D9tC+GWdT8cBfzSz78emttvM7AgK7Hq6\n+yvAN4EXgZeBrcBTwJsFdj0zRna5fiNjvOv/Wy9TOP9vfRK4P24XTDnN7IPAS+6+sctLBVPGaBLw\nv2KT6iNmdmqM51TOgZxACn6SoZkdBfwUuDzWRAqtfO8HtsTaUuZ6Gt2vbb7LPRiYDnzH3acDbwNX\nkf9ydWJmwwi/5MoJSeJIQhNGVwVV7iwK8v8tM/sqsNPdV2dCWXY76OU0sxTwVWBJtpezxPJ5LQcD\nw9x9JvBl4CcxnlM5B3ICaQHGJ56PJTQXFITYhPFT4Ifu/vMY3pKpvprZaKA1X+WLZgHnmNnvgdWE\npqtvEarZmX8bhXBdWwi/7p6Iz+8iJJRCu55zgd+7++vuvhv4GXAGMKzArmdGT9evBRiX2C/vZTaz\nRYSm1o8lwoVSzuMJ/QbPmtkfYjmeMrORFE4ZM14C/hPA3dcDu2OrQ07fpwM5gawHTjCzcjMrAS4A\n7slzmZL+H9Dg7jckYvcAi+P2IuDnXd90MLn7V9x9vLsfR7h+D7v7x4FHgPPiboVQzi3AS2Y2KYbO\nAn5LgV1PQtPVTDMrNTOjo5yFcj271i6T128xHeW6B/gE7FkN4s1MU9dB0qmcZjaf8Gv5HHffntjv\nHuCCONJtAnACYbLxQS2ju//G3Ue7+3HuPoHwZXyKu7dSYNcSuJvw75L4/1OJu/8plvP8/b6WB2tE\nwAEaZTCfMMJpM3BVvsuTKNcsYDdhZNjThHbw+cAI4KFY5gcJVcm8lzeW+X10jMKaADwOPE8YQVRc\nAOV7D+FHwzOEX1BDC/F6EpoxGoENhI7p4kK4nsAdhF+U2wmJ7iJgeE/Xj3AbhReAZ4HpeS7nZqA5\n/n/0FHBzYv+rYzkbgap8lbHL678njsIqwGs5GPghsBF4AnhfX66lJhKKiEhOBnITloiI5JESiIiI\n5EQJREREcqIEIiIiOVECERGRnCiBiIhITpRAREQkJ0ogIiKSk/8P9jTW97zGgR8AAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10c7bf940>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 専有面積と賃貸料の散布図\n",
"plt.scatter(X,Y)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.