Skip to content

Instantly share code, notes, and snippets.

Avatar

Lakshay lakshay-arora

View GitHub Profile
View additional_updated2.py
# get directory function in get images file
def get_directory(url):
return "URL_" + str(url.replace("/","_"))
View setup_flask.py
# importing the required libaries
from flask import Flask, render_template, request, redirect, url_for
from get_images import get_images, get_path, get_directory
from get_prediction import get_prediction
from generate_html import generate_html
from torchvision import models
import json
app = Flask(__name__)
View scrape_images.py
# importing required libraries
import requests
from bs4 import BeautifulSoup
import os
import time
def get_path(url):
return "static/URL_" + str(url.replace("/","_"))
headers = {
View deploy_pytorch_1.py
# importing the required libraries
import json
import io
import glob
from PIL import Image
from torchvision import models
import torchvision.transforms as transforms
# Pass the parameter "pretrained" as "True" to use the pretrained weights:
model = models.densenet121(pretrained=True)
View pycaret_load_model.py
# load model
dt_model = classification.load_model(model_name='decision_tree_1')
View pycaret_save_model.py
# save the model
classification.save_model(classification_dt, 'decision_tree_1')
View prediction_test_pycaret.py
# read the test data
test_data_classification = pd.read_csv('datasets/loan_test_data.csv')
# make predictions
predictions = classification.predict_model(classification_dt, data=test_data_classification)
# view the predictions
predictions
View interpret_model_2.py
# interpret model : Correlation
classification.interpret_model(classification_xgb,plot='correlation')
View interpret_model.py
# interpret_model: SHAP
classification.interpret_model(classification_xgb)
View evaluate_model.py
# evaluate model
classification.evaluate_model(classification_dt)