trying to build regression
Exception in thread "main" java.lang.reflect.InvocationTargetException | |
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) | |
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) | |
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) | |
at java.lang.reflect.Method.invoke(Method.java:498) | |
at com.intellij.rt.execution.CommandLineWrapper.main(CommandLineWrapper.java:66) | |
Caused by: java.lang.IllegalArgumentException: Labels and preOutput must have equal shapes: got shapes [1000, 1] vs [1000, 4] | |
at org.nd4j.base.Preconditions.throwEx(Preconditions.java:636) | |
at org.nd4j.linalg.lossfunctions.impl.LossL2.computeGradient(LossL2.java:115) | |
at org.nd4j.linalg.lossfunctions.impl.LossMSE.computeGradient(LossMSE.java:62) | |
at org.deeplearning4j.nn.layers.BaseOutputLayer.getGradientsAndDelta(BaseOutputLayer.java:173) | |
at org.deeplearning4j.nn.layers.BaseOutputLayer.backpropGradient(BaseOutputLayer.java:145) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.calcBackpropGradients(MultiLayerNetwork.java:1898) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.computeGradientAndScore(MultiLayerNetwork.java:2684) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.computeGradientAndScore(MultiLayerNetwork.java:2627) | |
at org.deeplearning4j.optimize.solvers.BaseOptimizer.gradientAndScore(BaseOptimizer.java:160) | |
at org.deeplearning4j.optimize.solvers.StochasticGradientDescent.optimize(StochasticGradientDescent.java:63) | |
at org.deeplearning4j.optimize.Solver.optimize(Solver.java:52) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.fitHelper(MultiLayerNetwork.java:2231) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.fit(MultiLayerNetwork.java:2189) | |
at org.deeplearning4j.nn.multilayer.MultiLayerNetwork.fit(MultiLayerNetwork.java:2252) | |
at Plotter.fitStraightline(Plotter.java:94) | |
at Plotter.main(Plotter.java:45) | |
... 5 more |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment