View agaricus-lepiota.data
p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u | |
e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g | |
e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m | |
p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u | |
e,x,s,g,f,n,f,w,b,k,t,e,s,s,w,w,p,w,o,e,n,a,g | |
e,x,y,y,t,a,f,c,b,n,e,c,s,s,w,w,p,w,o,p,k,n,g | |
e,b,s,w,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,n,m | |
e,b,y,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,s,m | |
p,x,y,w,t,p,f,c,n,p,e,e,s,s,w,w,p,w,o,p,k,v,g | |
e,b,s,y,t,a,f,c,b,g,e,c,s,s,w,w,p,w,o,p,k,s,m |
View randomForest.py
from __future__ import division | |
import random, datafile, decisionTree, collections | |
#Must import datafile.py and decisionTree.py | |
def randomSelection(arr, n_items): | |
return random.sample(arr, n_items) | |
class randomForest: |
View decisionTree.py
import numpy as np, pandas as pd | |
from pprint import pprint | |
from copy import copy | |
import math,urllib2,datafile,pdb | |
#This tutorial is derived from ... | |
#http://nbviewer.ipython.org/github/gumption/Python_for_Data_Science/blob/master/4_Python_Simple_Decision_Tree.ipynb | |
#Data set will be taken from | |
data= datafile.get('mushroom') |
View datafile.py
import urllib2, pandas as pd | |
d = { | |
'mushroom' :{ | |
'features': [ | |
'class','cap-shape', 'cap-surface', 'cap-color', | |
'bruises?','odor','gill-attachment', |
View naiveBayes.py
from __future__ import division | |
import pandas as pd, numpy as np,datafile,math,pdb,itertools | |
from pprint import pprint | |
from collections import Counter | |
#Will need to import datafile.py and correct dataset for this program | |
class naiveBayes: | |
def __init__(self,name='play', testSize=0): | |
View KMeans.java
package KMeans; | |
import org.apache.commons.lang3.ArrayUtils; | |
import org.apache.commons.math3.linear.MatrixUtils; | |
import org.apache.commons.math3.linear.RealMatrix; | |
import org.apache.commons.math3.linear.RealVector; | |
import org.apache.commons.math3.stat.StatUtils; | |
import java.lang.reflect.Array; | |
import java.util.*; |
View NeuralNetwork.java
package NeuralNetwork; | |
import org.apache.commons.lang3.*; | |
import org.apache.commons.math3.linear.*; | |
import org.apache.commons.math3.stat.StatUtils; | |
import javax.swing.*; | |
import java.util.*; | |
/** |
View kNearestNeighbor.java
package com.example.kNearestNeighbor; | |
//To use third party libraries simply download the jar | |
//and put it in the Program Files/jre/jdk#.#(version number)/lib/ext for example | |
//Can get the jar file for guava at https://code.google.com/p/guava-libraries/ | |
import com.google.common.base.Functions; | |
import com.google.common.collect.Ordering; | |
//Can get the apache commons math file at |
View neuralNetwork.py
import numpy as np | |
import math | |
from pprint import pprint | |
import pdb | |
#Linearly separable | |
_or = { | |
'X': [[0,0],[0,1],[1,0],[1,1]], |
View linearRegression.py
import numpy as np | |
import dataMunge, pdb | |
from sklearn import linear_model | |
input = [ | |
[95, 85], | |
[85, 95], | |
[80, 70], | |
[70, 65], | |
[60, 70] |
NewerOlder