Created
June 3, 2020 17:42
-
-
Save lucidrains/7ef8b75ae10e7e6af8c375080effd9f7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
def psi(x): | |
return F.elu(x) + 1 | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads): | |
super().__init__() | |
self.to_qkv = nn.Linear(dim, dim * 3, bias = False) | |
self.to_out = nn.Linear(dim, dim) | |
def forward(self, x): | |
b, t, d = x.shape | |
q, k, v = self.to_qkv(x).chunk(3, dim=-1) | |
merge_heads = lambda x: x.reshape(b, t, h, -1).transpose(1, 2).reshape(b * h, t, -1) | |
q, k, v = map(merge_heads, (q, k, v)) | |
q, k = map(psi, (q, k)) | |
norm_q = q / q.sum(dim=-1, keepdim=True) | |
context = torch.einsum('bnd,bne->bnde', k, v) | |
context = context.cumsum(dim=1) / k.cumsum(dim=1).unsqueeze(-1) | |
out = torch.einsum('bnd,bnde->bne', norm_q, context) | |
out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1) | |
return self.to_out(out) | |
x = torch.randn(1, 1024, 512) | |
attn = LinearAttention(dim=512, heads=8) | |
attn(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment