Skip to content

Instantly share code, notes, and snippets.

@lx-88
Last active August 27, 2023 15:17
Show Gist options
  • Star 12 You must be signed in to star a gist
  • Fork 5 You must be signed in to fork a gist
  • Save lx-88/413b48ced6b79300ea76 to your computer and use it in GitHub Desktop.
Save lx-88/413b48ced6b79300ea76 to your computer and use it in GitHub Desktop.
Arduino function to read a Vegetronix VH400 Soil Moisture Sensor. See http://www.vegetronix.com/Products/VH400/
// MIT License (MIT)
//
// Copyright (c) 2015. Michael Ewald, GeomaticsResearch LLC.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// Author: Michael Ewald (mewald@geomaticsresearch.com)
// Web: https://GeomaticsResearch.com
// Last-updated: 2015-07-04
float readVH400(int analogPin) {
// This function returns Volumetric Water Content by converting the analogPin value to voltage
// and then converting voltage to VWC using the piecewise regressions provided by the manufacturer
// at http://www.vegetronix.com/Products/VH400/VH400-Piecewise-Curve.phtml
// NOTE: You need to set analogPin to input in your setup block
// ex. pinMode(<analogPin>, INPUT);
// replace <analogPin> with the number of the pin you're going to read from.
// Read value and convert to voltage
int sensor1DN = analogRead(analogPin);
float sensorVoltage = sensor1DN*(3.0 / 1023.0);
float VWC;
// Calculate VWC
if(sensorVoltage <= 1.1) {
VWC = 10*sensorVoltage-1;
} else if(sensorVoltage > 1.1 && sensorVoltage <= 1.3) {
VWC = 25*sensorVoltage-17.5;
} else if(sensorVoltage > 1.3 && sensorVoltage <= 1.82) {
VWC = 48.08*sensorVoltage-47.5;
} else if(sensorVoltage > 1.82) {
VWC = 26.32*sensorVoltage-7.89;
}
return(VWC);
}
struct VH400 {
double analogValue;
double analogValue_sd;
double voltage;
double voltage_sd;
double VWC;
double VWC_sd;
};
struct VH400 readVH400_wStats(int analogPin, int nMeasurements = 100, int delayBetweenMeasurements = 50) {
// This variant calculates the mean and standard deviation of 100 measurements over 5 seconds.
// It reports mean and standard deviation for the analog value, voltage, and WVC.
// This function returns Volumetric Water Content by converting the analogPin value to voltage
// and then converting voltage to VWC using the piecewise regressions provided by the manufacturer
// at http://www.vegetronix.com/Products/VH400/VH400-Piecewise-Curve.phtml
// NOTE: You need to set analogPin to input in your setup block
// ex. pinMode(<analogPin>, INPUT);
// replace <analogPin> with the number of the pin you're going to read from.
struct VH400 result;
// Sums for calculating statistics
int sensorDNsum = 0;
double sensorVoltageSum = 0.0;
double sensorVWCSum = 0.0;
double sqDevSum_DN = 0.0;
double sqDevSum_volts = 0.0;
double sqDevSum_VWC = 0.0;
// Arrays to hold multiple measurements
int sensorDNs[nMeasurements];
double sensorVoltages[nMeasurements];
double sensorVWCs[nMeasurements];
// Make measurements and add to arrays
for (int i = 0; i < nMeasurements; i++) {
// Read value and convert to voltage
int sensorDN = analogRead(analogPin);
double sensorVoltage = sensorDN*(3.0 / 1023.0);
// Calculate VWC
float VWC;
if(sensorVoltage <= 1.1) {
VWC = 10*sensorVoltage-1;
} else if(sensorVoltage > 1.1 && sensorVoltage <= 1.3) {
VWC = 25*sensorVoltage-17.5;
} else if(sensorVoltage > 1.3 && sensorVoltage <= 1.82) {
VWC = 48.08*sensorVoltage-47.5;
} else if(sensorVoltage > 1.82) {
VWC = 26.32*sensorVoltage-7.89;
}
// Add to statistics sums
sensorDNsum += sensorDN;
sensorVoltageSum += sensorVoltage;
sensorVWCSum += VWC;
// Add to arrays
sensorDNs[i] = sensorDN;
sensorVoltages[i] = sensorVoltage;
sensorVWCs[i] = VWC;
// Wait for next measurement
delay(delayBetweenMeasurements);
}
// Calculate means
double DN_mean = double(sensorDNsum)/double(nMeasurements);
double volts_mean = sensorVoltageSum/double(nMeasurements);
double VWC_mean = sensorVWCSum/double(nMeasurements);
// Loop back through to calculate SD
for (int i = 0; i < nMeasurements; i++) {
sqDevSum_DN += pow((DN_mean - double(sensorDNs[i])), 2);
sqDevSum_volts += pow((volts_mean - double(sensorVoltages[i])), 2);
sqDevSum_VWC += pow((VWC_mean - double(sensorVWCs[i])), 2);
}
double DN_stDev = sqrt(sqDevSum_DN/double(nMeasurements));
double volts_stDev = sqrt(sqDevSum_volts/double(nMeasurements));
double VWC_stDev = sqrt(sqDevSum_VWC/double(nMeasurements));
// Setup the output struct
result.analogValue = DN_mean;
result.analogValue_sd = DN_stDev;
result.voltage = volts_mean;
result.voltage_sd = volts_stDev;
result.VWC = VWC_mean;
result.VWC_sd = VWC_stDev;
// Return the result
return(result);
}
@afitterling
Copy link

afitterling commented Jul 23, 2017

I written a cloud service, you can do all this stuff on my cloud for free... no code for it on your micro controller anymore. If you have interest contact me over www.iot-upstream.ch

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment