Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
def rational_to_contfrac(x,y):
# Converts a rational x/y fraction into a list of partial quotients [a0, ..., an]
a = x // y
pquotients = [a]
while a * y != x:
x, y = y, x - a * y
a = x // y
pquotients.append(a)
return pquotients
def convergents_from_contfrac(frac):
# computes the list of convergents using the list of partial quotients
convs = [];
for i in range(len(frac)): convs.append(contfrac_to_rational(frac[0 : i]))
return convs
def contfrac_to_rational (frac):
# Converts a finite continued fraction [a0, ..., an] to an x/y rational.
if len(frac) == 0: return (0,1)
num = frac[-1]
denom = 1
for _ in range(-2, -len(frac) - 1, -1): num, denom = frac[_] * num + denom, num
return (num, denom)
from continued_fractions import *
n = 109676931776753394141394564514720734236796584022842820507613945978304098920529412415619708851314423671483225500317195833435789174491417871864260375066278885574232653256425434296113773973874542733322600365156233965235292281146938652303374751525426102732530711430473466903656428846184387282528950095967567885381
e = 49446678600051379228760906286031155509742239832659705731559249988210578539211813543612425990507831160407165259046991194935262200565953842567148786053040450198919753834397378188932524599840027093290217612285214105791999673535556558448523448336314401414644879827127064929878383237432895170442176211946286617205
c = 103280644092615059984518332609100925251130437801342718478803923990158474621180283788652329522078935869010936203566024336697568861166241737937884153980866061431062015970439320809653170936674539901900312536610219900459284854811622720209705994060764318380465515920139663572083312965314519159261624303103692125635
def egcd(a, b):
if a == 0: return (b, 0, 1)
g, x, y = egcd(b % a, a)
return (g, y - (b // a) * x, x)
def mod_inv(a, m):
g, x, _ = egcd(a, m)
return (x + m) % m
def isqrt(n):
x = n
y = (x + 1) // 2
while y < x:
x = y
y = (x + n // x) // 2
return x
def crack_rsa(e, n):
frac = rational_to_contfrac(e, n)
convergents = convergents_from_contfrac(frac)
for (k, d) in convergents:
if k != 0 and (e * d - 1) % k == 0:
phi = (e * d - 1) // k
s = n - phi + 1
# check if x*x - s*x + n = 0 has integer roots
D = s * s - 4 * n
if D >= 0:
sq = isqrt(D)
if sq * sq == D and (s + sq) % 2 == 0: return d
d = crack_rsa(e, n)
m = hex(pow(c, d, n)).rstrip("L")[2:]
print(m.decode("hex"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment