from transformers import Trainer, TrainingArguments | |
training_args = TrainingArguments( | |
output_dir="./storage/gpt2-motivational_v6", #The output directory | |
overwrite_output_dir=True, #overwrite the content of the output directory | |
num_train_epochs=10, # number of training epochs | |
per_gpu_train_batch_size=32, # batch size for training | |
per_gpu_eval_batch_size=64, # batch size for evaluation | |
logging_steps = 500, # Number of update steps between two evaluations. | |
save_steps=500, # after # steps model is saved | |
warmup_steps=500,# number of warmup steps for learning rate scheduler | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=test_dataset, | |
prediction_loss_only=True, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment