Skip to content

Instantly share code, notes, and snippets.

Marcel marcelcaraciolo

Block or report user

Report or block marcelcaraciolo

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
marcelcaraciolo /
Created Jan 31, 2014
Read excel file and return all the rows as dict fields. ;)
import xlrd
def getDataFromFile(fileName):
with xlrd.open_workbook(fileName) as wb:
# we are using the first sheet here
worksheet = wb.sheet_by_index(0)
# getting number or rows and setting current row as 0 -e.g first
num_rows, curr_row = worksheet.nrows - 1, 0
# retrieving keys values(first row values)
# -*- coding: utf-8 -*-
from xml.dom import minidom
from core.utils import asciize
from signin import sign_file
import urllib2
import os, decimal
import settings
from nfe.exceptions import NoContratorOrIncompleteInformation
from nfe.utils import dict2XML
import os, sys
# sys.path.insert(0, '../')
import libxml2
import xmlsec
def start():
View html_equipaments.html
<!DOCTYPE html>
<html lang="en">
<meta charset="utf-8" />
<meta http-equiv="x-ua-compatible" content="ie=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1" />
<link rel="shortcut icon" href="{{ STATIC_URL }}img/favicon.ico" type="image/x-icon" />
<title>Genomika Labs</title>
<!--[if lt IE 9]>
#-*- coding: utf-8 -*-
import celery
import hashlib
import datetime
from django.db import models
from django.conf import settings
from django.utils.html import escape
from django.utils.translation import ugettext_lazy as _
from __future__ import absolute_import
from celery import shared_task
# import the logging library
import logging
# Get an instance of a logger
logger = logging.getLogger(__name__)
marcelcaraciolo / sequence.pyx
Created Apr 25, 2014
Sequence example file
View sequence.pyx
String object representing biological sequences with alphabets.
View node.js
$("#send").click(function(e) {
// convert canvas to data url
var img = canvas.toDataURL();
// make request to server
$.post("/", {img: img, n: n}, function() {
// when request is finished, redirect to homepage
return false;
import os
from PIL import Image
import numpy as np
files = [f for f in os.listdir("handwriting/numbers/")]
files = ["handwriting/numbers/" + f for f in files]
STANDARD_SIZE = (50, 50)
def get_image_data(filename):
img =
from sklearn.decomposition import RandomizedPCA
from sklearn.preprocessing import StandardScaler
pca = RandomizedPCA(n_components=10)
std_scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.1)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
You can’t perform that action at this time.