Skip to content

Instantly share code, notes, and snippets.

@markroxor
Created October 5, 2018 17:53
Show Gist options
  • Star 4 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save markroxor/86d62360836fd16b65bf10ebf641473f to your computer and use it in GitHub Desktop.
Save markroxor/86d62360836fd16b65bf10ebf641473f to your computer and use it in GitHub Desktop.
import sys
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull
eps = np.random.rand(1)/100
def on_segment(p, q, r):
return ((q[0] <= max(p[0], r[0])) and (q[0] >= min(p[0], r[0]))
and q[1] <= max(p[1] , r[1]) and q[1] >= min(p[1], r[1]))
def orientation(p, q, r):
val = (q[1] - p[1]) * (r[0] - q[0]) - \
(q[0] - p[0]) * (r[1] - q[1])
if val == 0:
return 0
elif val > 0:
return 1
else:
return -1
def intersect(p1, q1, p2, q2):
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
if (o1 != o2 and o3 != o4):
return True
if (o1 == 0 and on_segment(p1, p2, q1)):
return True
if (o2 == 0 and on_segment(p1, q2, q1)):
return True
if (o3 == 0 and on_segment(p2, p1, q2)):
return True
if (o4 == 0 and on_segment(p2, q1, q2)):
return True
return False
def is_inside(pts, p):
# taken from https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/
eps = 0.0001
# to avoid a special case where ray from point to infinity crosses the two vertices of the polygon.
# and all these three points become collinear.
p[0] += eps
p[1] += eps
n = len(pts)
extreme = (sys.maxsize, p[1])
count = 0
i = 0
for i in range(n):
_next = (i + 1) % n
if intersect(pts[i], pts[_next], p, extreme):
if orientation(pts[i], p, pts[_next]) == 0:
return on_segment(pts[i], p, pts[_next])
count += 1
return bool(count & 1)
def get_line(pt1, pt2):
if pt1[0] == pt2[0]:
return sys.maxsize, pt1[0]
m = (pt2[1] - pt1[1])/(pt2[0] - pt1[0])
c = (pt1[1]*pt2[0] - pt2[1]*pt1[0]) / (pt2[0] - pt1[0])
return m, c
def get_line_intersection(m1, c1, m2, c2):
x = (c2 - c1)/(m1 - m2)
y = m1 * x + c1
return x, y
def get_length(pt1, pt2):
a = pt1[0] - pt2[0]
a = np.square(a)
b = pt1[1] - pt2[1]
b = np.square(b)
return np.sqrt(a + b)
def is_on_segment(pt1, pt2, pt3, pt4, pt, eps=-0.001):
x1, y1 = pt1
x2, y2 = pt2
x3, y3 = pt3
x4, y4 = pt4
x, y = pt
return eps<=max(y1, y2)-y and y-min(y1, y2)>=eps and eps<=max(y3, y4)-y and y-min(y3, y4)>=eps and \
eps<=max(x1, x2)-x and x-min(x1, x2)>=eps and eps<=max(x3, x4)-x and x-min(x3, x4)>=eps
def get_intersection(poly1, poly2):
print("\n\n")
print(poly1)
print(poly2)
intersecting_coords = []
for c in poly1[:-1]:
if is_inside(poly2[:-1], c):
intersecting_coords.append((c[0], c[1]))
plt.scatter(c[0], c[1])
for c in poly2[:-1]:
if is_inside(poly1[:-1], c):
intersecting_coords.append((c[0], c[1]))
plt.scatter(c[0], c[1])
for i1, c1 in enumerate(poly1[:-1]):
for i2, c2 in enumerate(poly2[:-1]):
pt1, pt2 = (poly1[i1], poly1[(i1+1)%len(poly1)])
x1, y1 = pt1
x2, y2 = pt2
pt3, pt4 = (poly2[i2], poly2[(i2+1)%len(poly2)])
x3, y3 = pt3
x4, y4 = pt4
m1, c1 = get_line(pt1, pt2)
m2, c2 = get_line(pt3, pt4)
if m1 == m2 and c1 == c2:
if get_length(pt1, pt2) < get_length(pt3, pt4):
intersecting_coords.append(pt1)
intersecting_coords.append(pt2)
plt.scatter(pt1, pt2)
else:
intersecting_coords.append(pt3)
intersecting_coords.append(pt4)
plt.scatter(pt3, pt4)
elif m1!=m2:
if m1 == sys.maxsize:
x = x1
y = m2 * x1 + c2
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)):
intersecting_coords.append((x, y))
plt.scatter(x, y)
elif m2 == sys.maxsize:
x = x3
y = m1 * x3 + c1
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)):
intersecting_coords.append((x, y))
plt.scatter(x, y)
elif m1 == 0:
y = y1
x = (y1 - c2) / m2
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)):
intersecting_coords.append((x, y))
plt.scatter(x, y)
elif m2 == 0:
y = y3
x = (y3 - c1) / m1
if is_on_segment(pt1, pt2, pt3, pt4, (x, y)):
intersecting_coords.append((x, y))
plt.scatter(x, y)
else:
x, y = get_line_intersection(m1, c1, m2, c2)
_m1 = y - pt1[1]
_m1 /= (x - pt1[0])
_m2 = y - pt2[1]
_m2 /= (x - pt2[0])
_m3 = y - pt3[1]
_m3 /= (x - pt3[0])
_m4 = y - pt4[1]
_m4 /= (x - pt4[0])
if _m1 * _m2 < 0 and _m3 * _m4 < 0:
intersecting_coords.append((x, y))
plt.scatter(x, y)
else:
print('do not intersect parallel')
intersecting_coords = np.array(intersecting_coords)
hull = ConvexHull(intersecting_coords)
intersecting_coords = intersecting_coords[hull.vertices]
intersecting_coords = np.append(intersecting_coords, [intersecting_coords[0]], axis=0)
x, y = intersecting_coords.T
print(intersecting_coords)
print(len(intersecting_coords))
x1, y1 = poly1.T
x2, y2 = poly2.T
plt.plot(x1, y1)
plt.plot(x2, y2)
plt.plot(x, y, c='k')
plt.show()
poly1 = np.array([[451.8107, 173.44763],
[531.7912, 173.45604],
[533.50757, 222.04575],
[453.52707, 222.03732],
[451.8107, 173.44763]])
poly2 = np.array([[449.92476, 172.5057 ],
[530.552293, 172.5057 ],
[530.552293, 220.237058],
[449.92476, 220.237058],
[449.92476, 172.5057 ]])
get_intersection(poly1, poly2)
@markroxor
Copy link
Author

This finds intersection of two quadrilaterals, the intersecting region is bound by black boundary.
so

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment