View package.json
{ | |
"dependencies": { | |
"@tensorflow-models/posenet": "^2.2.1", | |
"@tensorflow/tfjs": "^2.3.0", | |
"@tensorflow/tfjs-node": "^2.3.0", | |
"canvas": "^2.6.1", | |
"mathjs": "^7.2.0", | |
"typescript": "^4.0.2" | |
} | |
} |
View confidence_interval.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View GP.ipynb
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
View upload.py
data = pd.read_csv("./day.csv") | |
for i in range(data.shape[0]): | |
contents = [list(zip(data.columns, map(lambda x: str(x), tuple(data.loc[i,:]))))] | |
put_logs(client, project, logstore, contents) |
View dt.py
e_set("timestamp",dt_totimestamp(dt_parse(v("dteday")))) | |
e_if( | |
e_search("weathersit==1"), e_set("good", 1, "normal", 0, "bad", 0, "terrible", 0), | |
e_search("weathersit==2"), e_set("good", 0, "normal", 1, "bad", 0, "terrible", 0), | |
e_search("weathersit==3"), e_set("good", 0, "normal", 0, "bad", 1, "terrible", 0), | |
e_search("weathersit==4"), e_set("good", 0, "normal", 0, "bad", 0, "terrible", 1) | |
) | |
e_if( | |
e_search("weekday==0"), e_set("sunday", 0, "monday", 0, "tuesday", 0, "wednesday", 0, "thursday", 0, "friday", 0, "saturday", 0), | |
e_search("weekday==1"), e_set("sunday", 0, "monday", 1, "tuesday", 0, "wednesday", 0, "thursday", 0, "friday", 0, "saturday", 0), |
View 1hour.sql
select | |
timestamp, | |
value | |
where | |
timestamp > ( to_unixtime(localtimestamp) - 3600) | |
order by timestamp asc |
View work_with_subquery.sql
* | select | |
preds[1] as unixtime, | |
preds[3] as predict | |
from ( | |
select | |
ts_predicate_ar(timestamp, value, 2, 10) as p | |
from log | |
), unnest(p) as t(preds) |
View not_work.sql
* | select | |
unixtime, | |
predict | |
from ( | |
select | |
ts_predicate_ar(timestamp, value, 2, 10) | |
from log | |
) |
View detect.sql
* | select | |
ts_cp_detect(timestamp, value, 50) | |
limit 1000 |
View generate_for_detection.py
ar_data = np.concatenate(( | |
generate(1.4, -0.48, 5, 0.5, 450), | |
generate(1.4, -0.48, 10, 0.5, 100), | |
generate(1.4, -0.48, 5, 0.5, 450) | |
)) | |
timestamps = sorted(range(1000)) | |
contents = [] | |
for timestamp in timestamps: | |
contents.append([ | |
("timestamp", str(timestamp)), |
NewerOlder