Skip to content

Instantly share code, notes, and snippets.

@mblondel
Last active April 13, 2024 04:42
Show Gist options
  • Save mblondel/586753 to your computer and use it in GitHub Desktop.
Save mblondel/586753 to your computer and use it in GitHub Desktop.
Support Vector Machines
# Mathieu Blondel, September 2010
# License: BSD 3 clause
import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
def linear_kernel(x1, x2):
return np.dot(x1, x2)
def polynomial_kernel(x, y, p=3):
return (1 + np.dot(x, y)) ** p
def gaussian_kernel(x, y, sigma=5.0):
return np.exp(-linalg.norm(x-y)**2 / (2 * (sigma ** 2)))
class SVM(object):
def __init__(self, kernel=linear_kernel, C=None):
self.kernel = kernel
self.C = C
if self.C is not None: self.C = float(self.C)
def fit(self, X, y):
n_samples, n_features = X.shape
# Gram matrix
K = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(n_samples):
K[i,j] = self.kernel(X[i], X[j])
P = cvxopt.matrix(np.outer(y,y) * K)
q = cvxopt.matrix(np.ones(n_samples) * -1)
A = cvxopt.matrix(y, (1,n_samples))
b = cvxopt.matrix(0.0)
if self.C is None:
G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
h = cvxopt.matrix(np.zeros(n_samples))
else:
tmp1 = np.diag(np.ones(n_samples) * -1)
tmp2 = np.identity(n_samples)
G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
tmp1 = np.zeros(n_samples)
tmp2 = np.ones(n_samples) * self.C
h = cvxopt.matrix(np.hstack((tmp1, tmp2)))
# solve QP problem
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
# Lagrange multipliers
a = np.ravel(solution['x'])
# Support vectors have non zero lagrange multipliers
sv = a > 1e-5
ind = np.arange(len(a))[sv]
self.a = a[sv]
self.sv = X[sv]
self.sv_y = y[sv]
print "%d support vectors out of %d points" % (len(self.a), n_samples)
# Intercept
self.b = 0
for n in range(len(self.a)):
self.b += self.sv_y[n]
self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv])
self.b /= len(self.a)
# Weight vector
if self.kernel == linear_kernel:
self.w = np.zeros(n_features)
for n in range(len(self.a)):
self.w += self.a[n] * self.sv_y[n] * self.sv[n]
else:
self.w = None
def project(self, X):
if self.w is not None:
return np.dot(X, self.w) + self.b
else:
y_predict = np.zeros(len(X))
for i in range(len(X)):
s = 0
for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
s += a * sv_y * self.kernel(X[i], sv)
y_predict[i] = s
return y_predict + self.b
def predict(self, X):
return np.sign(self.project(X))
if __name__ == "__main__":
import pylab as pl
def gen_lin_separable_data():
# generate training data in the 2-d case
mean1 = np.array([0, 2])
mean2 = np.array([2, 0])
cov = np.array([[0.8, 0.6], [0.6, 0.8]])
X1 = np.random.multivariate_normal(mean1, cov, 100)
y1 = np.ones(len(X1))
X2 = np.random.multivariate_normal(mean2, cov, 100)
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
def gen_non_lin_separable_data():
mean1 = [-1, 2]
mean2 = [1, -1]
mean3 = [4, -4]
mean4 = [-4, 4]
cov = [[1.0,0.8], [0.8, 1.0]]
X1 = np.random.multivariate_normal(mean1, cov, 50)
X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))
y1 = np.ones(len(X1))
X2 = np.random.multivariate_normal(mean2, cov, 50)
X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
def gen_lin_separable_overlap_data():
# generate training data in the 2-d case
mean1 = np.array([0, 2])
mean2 = np.array([2, 0])
cov = np.array([[1.5, 1.0], [1.0, 1.5]])
X1 = np.random.multivariate_normal(mean1, cov, 100)
y1 = np.ones(len(X1))
X2 = np.random.multivariate_normal(mean2, cov, 100)
y2 = np.ones(len(X2)) * -1
return X1, y1, X2, y2
def split_train(X1, y1, X2, y2):
X1_train = X1[:90]
y1_train = y1[:90]
X2_train = X2[:90]
y2_train = y2[:90]
X_train = np.vstack((X1_train, X2_train))
y_train = np.hstack((y1_train, y2_train))
return X_train, y_train
def split_test(X1, y1, X2, y2):
X1_test = X1[90:]
y1_test = y1[90:]
X2_test = X2[90:]
y2_test = y2[90:]
X_test = np.vstack((X1_test, X2_test))
y_test = np.hstack((y1_test, y2_test))
return X_test, y_test
def plot_margin(X1_train, X2_train, clf):
def f(x, w, b, c=0):
# given x, return y such that [x,y] in on the line
# w.x + b = c
return (-w[0] * x - b + c) / w[1]
pl.plot(X1_train[:,0], X1_train[:,1], "ro")
pl.plot(X2_train[:,0], X2_train[:,1], "bo")
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")
# w.x + b = 0
a0 = -4; a1 = f(a0, clf.w, clf.b)
b0 = 4; b1 = f(b0, clf.w, clf.b)
pl.plot([a0,b0], [a1,b1], "k")
# w.x + b = 1
a0 = -4; a1 = f(a0, clf.w, clf.b, 1)
b0 = 4; b1 = f(b0, clf.w, clf.b, 1)
pl.plot([a0,b0], [a1,b1], "k--")
# w.x + b = -1
a0 = -4; a1 = f(a0, clf.w, clf.b, -1)
b0 = 4; b1 = f(b0, clf.w, clf.b, -1)
pl.plot([a0,b0], [a1,b1], "k--")
pl.axis("tight")
pl.show()
def plot_contour(X1_train, X2_train, clf):
pl.plot(X1_train[:,0], X1_train[:,1], "ro")
pl.plot(X2_train[:,0], X2_train[:,1], "bo")
pl.scatter(clf.sv[:,0], clf.sv[:,1], s=100, c="g")
X1, X2 = np.meshgrid(np.linspace(-6,6,50), np.linspace(-6,6,50))
X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])
Z = clf.project(X).reshape(X1.shape)
pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')
pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower')
pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower')
pl.axis("tight")
pl.show()
def test_linear():
X1, y1, X2, y2 = gen_lin_separable_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf = SVM()
clf.fit(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print "%d out of %d predictions correct" % (correct, len(y_predict))
plot_margin(X_train[y_train==1], X_train[y_train==-1], clf)
def test_non_linear():
X1, y1, X2, y2 = gen_non_lin_separable_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf = SVM(gaussian_kernel)
clf.fit(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print "%d out of %d predictions correct" % (correct, len(y_predict))
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)
def test_soft():
X1, y1, X2, y2 = gen_lin_separable_overlap_data()
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
clf = SVM(C=0.1)
clf.fit(X_train, y_train)
y_predict = clf.predict(X_test)
correct = np.sum(y_predict == y_test)
print "%d out of %d predictions correct" % (correct, len(y_predict))
plot_contour(X_train[y_train==1], X_train[y_train==-1], clf)
test_soft()
@mblondel
Copy link
Author

The problem with using an off-the-shelf QP solver is that the matrix P is n_samples x n_samples and needs to be stored in memory. So this implementation is more a toy implementation than anything else :)

@rbarve
Copy link

rbarve commented Aug 3, 2013

For the intercept b, shouldnt only the margin support vectors (strictly less than C) be used for the average? In the below code, the loop includes all support vectors (incl those that may be C) since 'a' contains all nonzero multipliers.. Am I missing something

Intercept

    self.b = 0
    for n in range(len(self.a)):
        self.b += self.sv_y[n]
        self.b -= np.sum(self.a * self.sv_y * K[ind[n],sv])
    self.b /= len(self.a)

@amit2510
Copy link

Thanks a lot for this useful python code, i am also looking for string kernel in python...anyone having idea?

@enrif
Copy link

enrif commented Jan 5, 2015

how can I do the test with the data in a CSV file (train.csv)?
thank you

@sujithms921
Copy link

how can I do the test with the data in a CSV file (train.csv)?

@zeromtmu
Copy link

how can i use it?

@liangweigang
Copy link

Just a toy.. It's a little bit funny. :D

@banusara
Copy link

banusara commented Oct 7, 2016

Its really useful but i want one class svm
Please provide me a coding for one class svm algorithm in python.
How to tune it parameters?

@matt123miller
Copy link

Really interesting, thanks for something to play with!

@likejazz
Copy link

likejazz commented Feb 9, 2017

Great code that is very helpful. Thanks.

@pedrotnascimento
Copy link

Hi, can you provide your reference to implement this code?

@InfamousMeGa
Copy link

Hi, the cvxopt QP solver is much slower than I expect when I run the train data. Is there any way to improve the runtime?

@poesie11
Copy link

I need a code to implement data sets in java

@xitizme78
Copy link

Typeerror: 'A' must be a 'd' matrix with 16 columns
What am i doing wrong?

@Aaf07
Copy link

Aaf07 commented Jul 31, 2017

Can you pls write up a code for svm classification for images too?

@ugurite
Copy link

ugurite commented Apr 2, 2018

@xitizme78 : your error usually means that the training labels you're giving are of type int. They should be of type float.
Do : y = y.astype(float)

@oottoohh
Copy link

how can i do a test to my data ?

@hasanisaeed
Copy link

Thanks man!...

@mblondel
Copy link
Author

@guruprasaad123
Copy link

@dmeoli
Copy link

dmeoli commented Mar 3, 2020

How can I modify this code to implement a SVR?

@guruprasaad123
Copy link

Here's the theoritical explanation of SVR which you can find here

@dmeoli
Copy link

dmeoli commented Mar 5, 2020

Thx!

@dmeoli
Copy link

dmeoli commented Mar 9, 2020

if anyone is interested in a possible implementation of an SVR according to the pdf linked by @guruprasaad123, they can find the code here: https://github.com/dmeoli/optiml/blob/master/optiml/ml/svm/_base.py

@MrinalTyagi
Copy link

@mblondel I am really late to the party but feel like line 75 is incorrect. Shouldn't it me self.w[n] . Do correct me if i am wrong on this.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment