Skip to content

Instantly share code, notes, and snippets.

@mblondel
Last active March 3, 2023 07:57
Show Gist options
  • Star 25 You must be signed in to star a gist
  • Fork 18 You must be signed in to fork a gist
  • Save mblondel/97cffbea574a5890f0d7 to your computer and use it in GitHub Desktop.
Save mblondel/97cffbea574a5890f0d7 to your computer and use it in GitHub Desktop.
Multiclass SVMs
"""
Multiclass SVMs (Crammer-Singer formulation).
A pure Python re-implementation of:
Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex.
Mathieu Blondel, Akinori Fujino, and Naonori Ueda.
ICPR 2014.
http://www.mblondel.org/publications/mblondel-icpr2014.pdf
"""
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils import check_random_state
from sklearn.preprocessing import LabelEncoder
def projection_simplex(v, z=1):
"""
Projection onto the simplex:
w^* = argmin_w 0.5 ||w-v||^2 s.t. \sum_i w_i = z, w_i >= 0
"""
# For other algorithms computing the same projection, see
# https://gist.github.com/mblondel/6f3b7aaad90606b98f71
n_features = v.shape[0]
u = np.sort(v)[::-1]
cssv = np.cumsum(u) - z
ind = np.arange(n_features) + 1
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
w = np.maximum(v - theta, 0)
return w
class MulticlassSVM(BaseEstimator, ClassifierMixin):
def __init__(self, C=1, max_iter=50, tol=0.05,
random_state=None, verbose=0):
self.C = C
self.max_iter = max_iter
self.tol = tol,
self.random_state = random_state
self.verbose = verbose
def _partial_gradient(self, X, y, i):
# Partial gradient for the ith sample.
g = np.dot(X[i], self.coef_.T) + 1
g[y[i]] -= 1
return g
def _violation(self, g, y, i):
# Optimality violation for the ith sample.
smallest = np.inf
for k in range(g.shape[0]):
if k == y[i] and self.dual_coef_[k, i] >= self.C:
continue
elif k != y[i] and self.dual_coef_[k, i] >= 0:
continue
smallest = min(smallest, g[k])
return g.max() - smallest
def _solve_subproblem(self, g, y, norms, i):
# Prepare inputs to the projection.
Ci = np.zeros(g.shape[0])
Ci[y[i]] = self.C
beta_hat = norms[i] * (Ci - self.dual_coef_[:, i]) + g / norms[i]
z = self.C * norms[i]
# Compute projection onto the simplex.
beta = projection_simplex(beta_hat, z)
return Ci - self.dual_coef_[:, i] - beta / norms[i]
def fit(self, X, y):
n_samples, n_features = X.shape
# Normalize labels.
self._label_encoder = LabelEncoder()
y = self._label_encoder.fit_transform(y)
# Initialize primal and dual coefficients.
n_classes = len(self._label_encoder.classes_)
self.dual_coef_ = np.zeros((n_classes, n_samples), dtype=np.float64)
self.coef_ = np.zeros((n_classes, n_features))
# Pre-compute norms.
norms = np.sqrt(np.sum(X ** 2, axis=1))
# Shuffle sample indices.
rs = check_random_state(self.random_state)
ind = np.arange(n_samples)
rs.shuffle(ind)
violation_init = None
for it in range(self.max_iter):
violation_sum = 0
for ii in range(n_samples):
i = ind[ii]
# All-zero samples can be safely ignored.
if norms[i] == 0:
continue
g = self._partial_gradient(X, y, i)
v = self._violation(g, y, i)
violation_sum += v
if v < 1e-12:
continue
# Solve subproblem for the ith sample.
delta = self._solve_subproblem(g, y, norms, i)
# Update primal and dual coefficients.
self.coef_ += (delta * X[i][:, np.newaxis]).T
self.dual_coef_[:, i] += delta
if it == 0:
violation_init = violation_sum
vratio = violation_sum / violation_init
if self.verbose >= 1:
print("iter", it + 1, "violation", vratio)
if vratio < self.tol:
if self.verbose >= 1:
print("Converged")
break
return self
def predict(self, X):
decision = np.dot(X, self.coef_.T)
pred = decision.argmax(axis=1)
return self._label_encoder.inverse_transform(pred)
if __name__ == '__main__':
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target
clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)
clf.fit(X, y)
print(clf.score(X, y))
@mblondel
Copy link
Author

mblondel commented Dec 26, 2019 via email

@leme-lab
Copy link

leme-lab commented Feb 5, 2020

Hello Mathieu.
First of all I would like to thank you for sharing your code.
I have a question concerning a biais. In classical SVM usually the separator of type wx+b is used but in the multiclass SVM version there is no b. According to Crammer and Singer 2001 it leads to some complexity in dual problem so they omitted it but they leave the opportunity to add it if needed. If there is no b, it's mean that your hyperplan is linear function and no affine and it's crossing a zero point. Do you need to do something with data to assure the linear separation because obviously it can change dramatically ?

@mblondel
Copy link
Author

mblondel commented Feb 5, 2020

@leme-lab: Indeed, fitting b leads to more complicated dual. The usual trick is to add a feature x_0 to all inputs, so that a weight w_0 is going to be learned. This is not exactly the same as as fitting b though (due to regularization).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment