# Load your data dls = CollabDataLoaders.from_df(data, user_name = "user_id", item_name = "name", rating_name = "rating", bs=64, seed = 0, valid_pct=0.1) # Store order of classes in both user_id and name order = {k:list(v) for k,v in dls.classes.items()} with open("dataloader_order.pkl", "wb") as f: pickle.dump(order, f) f.close() # Store positions of the users in train dataset and validation dataset for retrieval obj = {"Train_users": dls.train_ds.xs.user_id.unique(), "Train_venues":dls.train_ds.xs.name.unique(), "Valid_users":dls.valid_ds.xs.user_id.unique(), "Valid_venues":dls.valid_ds.xs.name.unique()} with open("dataloader_train_valid_split.pkl", "wb") as f: pickle.dump(obj, f) f.close()