from PIL import Image import numpy as np import matplotlib.pyplot as plt # Load image x = Image.open("image.jpg","r") # Convert black and white jpg image to array y = np.asarray(x.getdata(),dtype=np.float64).reshape(x.size[1],x.size[0]) #Plot image #plt.imshow(y,cmap=plt.cm.gray_r,interpolation="nearest") #plt.show() # Normalize the array within the range 0 and 1 for machine learning purposes # Float allowed def normalize(a): m = min(a) M = max(a) i = 0 while i < len(a): a[i] = (a[i]-m)/(M-m) i += 1 return a def normalizeArray(b): for k in range(len(b)): b[k] = normalize(b[k]) return b # Normalize the array within the range 0 and 1 for machine learning purposes # Float not allowed, only integers allowed def normalizeInt(a): m = min(a) M = max(a) i = 0 while i < len(a): temp = (a[i]-m)/(M-m) if temp < 0.5: a[i] = 0 else: a[i] = 1 i += 1 return a def normalizeArrayInt(b): for k in range(len(b)): b[k] = normalizeInt(b[k]) return b A = normalizeArray(y) plt.imshow(A,cmap=plt.cm.gray_r,interpolation="nearest") plt.show() B = normalizeArrayInt(y) plt.imshow(B,cmap=plt.cm.gray_r,interpolation="nearest") plt.show()