{{ message }}

Instantly share code, notes, and snippets.

# mithi/matplot_lib_examples.py

Created Jul 5, 2020
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters
 # -*- coding: utf-8 -*- """matplot3d_examples Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Zy_tYU5LXxJuc44AG_4GO9-2ZfVhFMnK """ from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt # Commented out IPython magic to ensure Python compatibility. # %matplotlib inline from mpl_toolkits.mplot3d import axes3d fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # load some test data for demonstration and plot a wireframe X, Y, Z = axes3d.get_test_data(0.1) ax.plot_wireframe(X, Y, Z, rstride=5, cstride=5) angle = 30 ax.view_init(30, angle) plt.draw() fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = [1, 2, 3] y = [1, 1, 1] z = [7, 8, 9] ax.plot(x, y, z) import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) def randrange(n, vmin, vmax): ''' Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). ''' return (vmax - vmin)*np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 100 # For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zlow, zhigh) ax.scatter(xs, ys, zs, marker=m) angle = 0 ax.view_init(30, angle) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z**2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label='parametric curve') ax.legend() plt.show() # https://jakevdp.github.io/PythonDataScienceHandbook/04.12-three-dimensional-plotting.html ax = plt.axes(projection='3d') # Data for a three-dimensional line zline = np.linspace(0, 15, 1000) xline = np.sin(zline) yline = np.cos(zline) ax.plot3D(x, y, z, 'red', marker = 'o') # Data for three-dimensional scattered points zdata = 15 * np.random.random(100) xdata = np.sin(zdata) + 0.1 * np.random.randn(100) ydata = np.cos(zdata) + 0.1 * np.random.randn(100) ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens', s = 300);