Skip to content

Instantly share code, notes, and snippets.

@mockiemockiz
Created August 17, 2015 01:49
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save mockiemockiz/4da8aaf76b4fffc66258 to your computer and use it in GitHub Desktop.
Save mockiemockiz/4da8aaf76b4fffc66258 to your computer and use it in GitHub Desktop.
#!/bin/sh
#
# /etc/init.d/elasticsearch -- startup script for Elasticsearch
#
# Written by Miquel van Smoorenburg <miquels@cistron.nl>.
# Modified for Debian GNU/Linux by Ian Murdock <imurdock@gnu.ai.mit.edu>.
# Modified for Tomcat by Stefan Gybas <sgybas@debian.org>.
# Modified for Tomcat6 by Thierry Carrez <thierry.carrez@ubuntu.com>.
# Additional improvements by Jason Brittain <jason.brittain@mulesoft.com>.
# Modified by Nicolas Huray for Elasticsearch <nicolas.huray@gmail.com>.
#
### BEGIN INIT INFO
# Provides: elasticsearch
# Required-Start: $network $remote_fs $named
# Required-Stop: $network $remote_fs $named
# Default-Start: 2 3 4 5
# Default-Stop: 0 1 6
# Short-Description: Starts elasticsearch
# Description: Starts elasticsearch using start-stop-daemon
### END INIT INFO
PATH=/bin:/usr/bin:/sbin:/usr/sbin
NAME=elasticsearch
DESC="Elasticsearch Server"
DEFAULT=/etc/default/$NAME
if [ `id -u` -ne 0 ]; then
echo "You need root privileges to run this script"
exit 1
fi
. /lib/lsb/init-functions
if [ -r /etc/default/rcS ]; then
. /etc/default/rcS
fi
# The following variables can be overwritten in $DEFAULT
# Run Elasticsearch as this user ID and group ID
ES_USER=elasticsearch
ES_GROUP=elasticsearch
# The first existing directory is used for JAVA_HOME (if JAVA_HOME is not defined in $DEFAULT)
JDK_DIRS="/usr/lib/jvm/java-8-oracle/ /usr/lib/jvm/j2sdk1.8-oracle/ /usr/lib/jvm/jdk-7-oracle-x64 /usr/lib/jvm/java-7-oracle /usr/lib/jvm/j2sdk1.7-oracle/ /usr/lib/jvm/java-7-openjdk /usr/lib/jvm/java-7-openjdk-amd64/ /usr/lib/jvm/java-7-openjdk-armhf /usr/lib/jvm/java-7-openjdk-i386/ /usr/lib/jvm/default-java"
# Look for the right JVM to use
for jdir in $JDK_DIRS; do
if [ -r "$jdir/bin/java" -a -z "${JAVA_HOME}" ]; then
JAVA_HOME="$jdir"
fi
done
export JAVA_HOME
# Directory where the Elasticsearch binary distribution resides
ES_HOME=/usr/share/$NAME
# Heap size defaults to 256m min, 1g max
# Set ES_HEAP_SIZE to 50% of available RAM, but no more than 31g
#ES_HEAP_SIZE=2g
# Heap new generation
#ES_HEAP_NEWSIZE=
# max direct memory
#ES_DIRECT_SIZE=
# Additional Java OPTS
#ES_JAVA_OPTS=
# Maximum number of open files
MAX_OPEN_FILES=65535
# Maximum amount of locked memory
#MAX_LOCKED_MEMORY=
# Elasticsearch log directory
LOG_DIR=/var/log/$NAME
# Elasticsearch data directory
DATA_DIR=/var/lib/$NAME
# Elasticsearch work directory
WORK_DIR=/tmp/$NAME
# Elasticsearch configuration directory
CONF_DIR=/etc/$NAME
# Elasticsearch configuration file (elasticsearch.yml)
CONF_FILE=$CONF_DIR/elasticsearch.yml
# Maximum number of VMA (Virtual Memory Areas) a process can own
MAX_MAP_COUNT=262144
# Path to the GC log file
#ES_GC_LOG_FILE=/var/log/elasticsearch/gc.log
# Elasticsearch PID file directory
PID_DIR="/var/run/elasticsearch"
# End of variables that can be overwritten in $DEFAULT
# overwrite settings from default file
if [ -f "$DEFAULT" ]; then
. "$DEFAULT"
fi
# Define other required variables
PID_FILE="$PID_DIR/$NAME.pid"
DAEMON=$ES_HOME/bin/elasticsearch
DAEMON_OPTS="-d -p $PID_FILE --default.config=$CONF_FILE --default.path.home=$ES_HOME --default.path.logs=$LOG_DIR --default.path.data=$DATA_DIR --default.path.work=$WORK_DIR --default.path.conf=$CONF_DIR"
export ES_HEAP_SIZE
export ES_HEAP_NEWSIZE
export ES_DIRECT_SIZE
export ES_JAVA_OPTS
# Check DAEMON exists
test -x $DAEMON || exit 0
checkJava() {
if [ -x "$JAVA_HOME/bin/java" ]; then
JAVA="$JAVA_HOME/bin/java"
else
JAVA=`which java`
fi
if [ ! -x "$JAVA" ]; then
echo "Could not find any executable java binary. Please install java in your PATH or set JAVA_HOME"
exit 1
fi
}
case "$1" in
start)
checkJava
if [ -n "$MAX_LOCKED_MEMORY" -a -z "$ES_HEAP_SIZE" ]; then
log_failure_msg "MAX_LOCKED_MEMORY is set - ES_HEAP_SIZE must also be set"
exit 1
fi
log_daemon_msg "Starting $DESC"
pid=`pidofproc -p $PID_FILE elasticsearch`
if [ -n "$pid" ] ; then
log_begin_msg "Already running."
log_end_msg 0
exit 0
fi
# Prepare environment
mkdir -p "$LOG_DIR" "$DATA_DIR" "$WORK_DIR" && chown "$ES_USER":"$ES_GROUP" "$LOG_DIR" "$DATA_DIR" "$WORK_DIR"
touch "$PID_FILE" && chown "$ES_USER":"$ES_GROUP" "$PID_FILE"
if [ -n "$MAX_OPEN_FILES" ]; then
ulimit -n $MAX_OPEN_FILES
fi
if [ -n "$MAX_LOCKED_MEMORY" ]; then
ulimit -l $MAX_LOCKED_MEMORY
fi
if [ -n "$MAX_MAP_COUNT" -a -f /proc/sys/vm/max_map_count ]; then
sysctl -q -w vm.max_map_count=$MAX_MAP_COUNT
fi
# Start Daemon
start-stop-daemon --start -b --user "$ES_USER" -c "$ES_USER" --pidfile "$PID_FILE" --exec $DAEMON -- $DAEMON_OPTS
return=$?
if [ $return -eq 0 ]
then
i=0
timeout=10
# Wait for the process to be properly started before exiting
until { cat "$PID_FILE" | xargs kill -0; } >/dev/null 2>&1
do
sleep 1
i=$(($i + 1))
[ $i -gt $timeout ] && log_end_msg 1
done
else
log_end_msg $return
fi
;;
stop)
log_daemon_msg "Stopping $DESC"
if [ -f "$PID_FILE" ]; then
start-stop-daemon --stop --pidfile "$PID_FILE" \
--user "$ES_USER" \
--retry=TERM/20/KILL/5 >/dev/null
if [ $? -eq 1 ]; then
log_progress_msg "$DESC is not running but pid file exists, cleaning up"
elif [ $? -eq 3 ]; then
PID="`cat $PID_FILE`"
log_failure_msg "Failed to stop $DESC (pid $PID)"
exit 1
fi
rm -f "$PID_FILE"
else
log_progress_msg "(not running)"
fi
log_end_msg 0
;;
status)
status_of_proc -p $PID_FILE elasticsearch elasticsearch && exit 0 || exit $?
;;
restart|force-reload)
if [ -f "$PID_FILE" ]; then
$0 stop
sleep 1
fi
$0 start
;;
*)
log_success_msg "Usage: $0 {start|stop|restart|force-reload|status}"
exit 1
;;
esac
exit 0
##################### Elasticsearch Configuration Example #####################
# This file contains an overview of various configuration settings,
# targeted at operations staff. Application developers should
# consult the guide at <http://elasticsearch.org/guide>.
#
# The installation procedure is covered at
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup.html>.
#
# Elasticsearch comes with reasonable defaults for most settings,
# so you can try it out without bothering with configuration.
#
# Most of the time, these defaults are just fine for running a production
# cluster. If you're fine-tuning your cluster, or wondering about the
# effect of certain configuration option, please _do ask_ on the
# mailing list or IRC channel [http://elasticsearch.org/community].
# Any element in the configuration can be replaced with environment variables
# by placing them in ${...} notation. For example:
#
#node.rack: ${RACK_ENV_VAR}
# For information on supported formats and syntax for the config file, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html>
################################### Cluster ###################################
# Cluster name identifies your cluster for auto-discovery. If you're running
# multiple clusters on the same network, make sure you're using unique names.
#
cluster.name: elasticsearch
#################################### Node #####################################
# Node names are generated dynamically on startup, so you're relieved
# from configuring them manually. You can tie this node to a specific name:
#
node.name: "Node client balancer"
# Every node can be configured to allow or deny being eligible as the master,
# and to allow or deny to store the data.
#
# Allow this node to be eligible as a master node (enabled by default):
#
node.master: true
#
# Allow this node to store data (enabled by default):
#
node.data: true
# You can exploit these settings to design advanced cluster topologies.
#
# 1. You want this node to never become a master node, only to hold data.
# This will be the "workhorse" of your cluster.
#
#node.master: false
#node.data: true
#
# 2. You want this node to only serve as a master: to not store any data and
# to have free resources. This will be the "coordinator" of your cluster.
#
# node.master: true
# node.data: false
#
# 3. You want this node to be neither master nor data node, but
# to act as a "search load balancer" (fetching data from nodes,
# aggregating results, etc.)
#
#node.master: false
#node.data: false
# Use the Cluster Health API [http://localhost:9200/_cluster/health], the
# Node Info API [http://localhost:9200/_nodes] or GUI tools
# such as <http://www.elasticsearch.org/overview/marvel/>,
# <http://github.com/karmi/elasticsearch-paramedic>,
# <http://github.com/lukas-vlcek/bigdesk> and
# <http://mobz.github.com/elasticsearch-head> to inspect the cluster state.
# A node can have generic attributes associated with it, which can later be used
# for customized shard allocation filtering, or allocation awareness. An attribute
# is a simple key value pair, similar to node.key: value, here is an example:
#
#node.rack: rack314
# By default, multiple nodes are allowed to start from the same installation location
# to disable it, set the following:
#node.max_local_storage_nodes: 1
#################################### Index ####################################
# You can set a number of options (such as shard/replica options, mapping
# or analyzer definitions, translog settings, ...) for indices globally,
# in this file.
#
# Note, that it makes more sense to configure index settings specifically for
# a certain index, either when creating it or by using the index templates API.
#
# See <http://elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules.html> and
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html>
# for more information.
# Set the number of shards (splits) of an index (5 by default):
#
#index.number_of_shards: 5
# Set the number of replicas (additional copies) of an index (1 by default):
#
#index.number_of_replicas: 1
# Note, that for development on a local machine, with small indices, it usually
# makes sense to "disable" the distributed features:
#
#index.number_of_shards: 1
#index.number_of_replicas: 0
# These settings directly affect the performance of index and search operations
# in your cluster. Assuming you have enough machines to hold shards and
# replicas, the rule of thumb is:
#
# 1. Having more *shards* enhances the _indexing_ performance and allows to
# _distribute_ a big index across machines.
# 2. Having more *replicas* enhances the _search_ performance and improves the
# cluster _availability_.
#
# The "number_of_shards" is a one-time setting for an index.
#
# The "number_of_replicas" can be increased or decreased anytime,
# by using the Index Update Settings API.
#
# Elasticsearch takes care about load balancing, relocating, gathering the
# results from nodes, etc. Experiment with different settings to fine-tune
# your setup.
# Use the Index Status API (<http://localhost:9200/A/_status>) to inspect
# the index status.
#################################### Paths ####################################
# Path to directory containing configuration (this file and logging.yml):
#
#path.conf: /path/to/conf
# Path to directory where to store index data allocated for this node.
#
#path.data: /path/to/data
#
# Can optionally include more than one location, causing data to be striped across
# the locations (a la RAID 0) on a file level, favouring locations with most free
# space on creation. For example:
#
#path.data: /path/to/data1,/path/to/data2
# Path to temporary files:
#
#path.work: /path/to/work
# Path to log files:
#
#path.logs: /path/to/logs
# Path to where plugins are installed:
#
#path.plugins: /path/to/plugins
#################################### Plugin ###################################
# If a plugin listed here is not installed for current node, the node will not start.
#
#plugin.mandatory: mapper-attachments,lang-groovy
################################### Memory ####################################
# Elasticsearch performs poorly when JVM starts swapping: you should ensure that
# it _never_ swaps.
#
# Set this property to true to lock the memory:
#
#bootstrap.mlockall: true
# Make sure that the ES_MIN_MEM and ES_MAX_MEM environment variables are set
# to the same value, and that the machine has enough memory to allocate
# for Elasticsearch, leaving enough memory for the operating system itself.
#
# You should also make sure that the Elasticsearch process is allowed to lock
# the memory, eg. by using `ulimit -l unlimited`.
############################## Network And HTTP ###############################
# Elasticsearch, by default, binds itself to the 0.0.0.0 address, and listens
# on port [9200-9300] for HTTP traffic and on port [9300-9400] for node-to-node
# communication. (the range means that if the port is busy, it will automatically
# try the next port).
# Set the bind address specifically (IPv4 or IPv6):
#
#network.bind_host: 192.168.0.1
network.bind_host: 127.0.0.1
# Set the address other nodes will use to communicate with this node. If not
# set, it is automatically derived. It must point to an actual IP address.
#
network.publish_host: 127.0.0.1
# Set both 'bind_host' and 'publish_host':
#
network.host: 127.0.0.1
# Set a custom port for the node to node communication (9300 by default):
#
#transport.tcp.port: 9300
# Enable compression for all communication between nodes (disabled by default):
#
#transport.tcp.compress: true
# Set a custom port to listen for HTTP traffic:
#
#http.port: 9200
# Set a custom allowed content length:
#
#http.max_content_length: 100mb
# Disable HTTP completely:
#
http.enabled: true
################################### Gateway ###################################
# The gateway allows for persisting the cluster state between full cluster
# restarts. Every change to the state (such as adding an index) will be stored
# in the gateway, and when the cluster starts up for the first time,
# it will read its state from the gateway.
# There are several types of gateway implementations. For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-gateway.html>.
# The default gateway type is the "local" gateway (recommended):
#
#gateway.type: local
# Settings below control how and when to start the initial recovery process on
# a full cluster restart (to reuse as much local data as possible when using shared
# gateway).
# Allow recovery process after N nodes in a cluster are up:
#
#gateway.recover_after_nodes: 1
# Set the timeout to initiate the recovery process, once the N nodes
# from previous setting are up (accepts time value):
#
#gateway.recover_after_time: 5m
# Set how many nodes are expected in this cluster. Once these N nodes
# are up (and recover_after_nodes is met), begin recovery process immediately
# (without waiting for recover_after_time to expire):
#
#gateway.expected_nodes: 2
############################# Recovery Throttling #############################
# These settings allow to control the process of shards allocation between
# nodes during initial recovery, replica allocation, rebalancing,
# or when adding and removing nodes.
# Set the number of concurrent recoveries happening on a node:
#
# 1. During the initial recovery
#
#cluster.routing.allocation.node_initial_primaries_recoveries: 4
#
# 2. During adding/removing nodes, rebalancing, etc
#
#cluster.routing.allocation.node_concurrent_recoveries: 2
# Set to throttle throughput when recovering (eg. 100mb, by default 20mb):
#
#indices.recovery.max_bytes_per_sec: 20mb
# Set to limit the number of open concurrent streams when
# recovering a shard from a peer:
#
#indices.recovery.concurrent_streams: 5
################################## Discovery ##################################
# Discovery infrastructure ensures nodes can be found within a cluster
# and master node is elected. Multicast discovery is the default.
# Set to ensure a node sees N other master eligible nodes to be considered
# operational within the cluster. This should be set to a quorum/majority of
# the master-eligible nodes in the cluster.
#
#discovery.zen.minimum_master_nodes: 1
# Set the time to wait for ping responses from other nodes when discovering.
# Set this option to a higher value on a slow or congested network
# to minimize discovery failures:
#
#discovery.zen.ping.timeout: 3s
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-zen.html>
# Unicast discovery allows to explicitly control which nodes will be used
# to discover the cluster. It can be used when multicast is not present,
# or to restrict the cluster communication-wise.
#
# 1. Disable multicast discovery (enabled by default):
#
#discovery.zen.ping.multicast.enabled: false
#
# 2. Configure an initial list of master nodes in the cluster
# to perform discovery when new nodes (master or data) are started:
#
#discovery.zen.ping.unicast.hosts: ["127.0.0.2"]
# EC2 discovery allows to use AWS EC2 API in order to perform discovery.
#
# You have to install the cloud-aws plugin for enabling the EC2 discovery.
#
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-ec2.html>
#
# See <http://elasticsearch.org/tutorials/elasticsearch-on-ec2/>
# for a step-by-step tutorial.
# GCE discovery allows to use Google Compute Engine API in order to perform discovery.
#
# You have to install the cloud-gce plugin for enabling the GCE discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-gce>.
# Azure discovery allows to use Azure API in order to perform discovery.
#
# You have to install the cloud-azure plugin for enabling the Azure discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-azure>.
################################## Slow Log ##################################
# Shard level query and fetch threshold logging.
#index.search.slowlog.threshold.query.warn: 10s
#index.search.slowlog.threshold.query.info: 5s
#index.search.slowlog.threshold.query.debug: 2s
#index.search.slowlog.threshold.query.trace: 500ms
#index.search.slowlog.threshold.fetch.warn: 1s
#index.search.slowlog.threshold.fetch.info: 800ms
#index.search.slowlog.threshold.fetch.debug: 500ms
#index.search.slowlog.threshold.fetch.trace: 200ms
#index.indexing.slowlog.threshold.index.warn: 10s
#index.indexing.slowlog.threshold.index.info: 5s
#index.indexing.slowlog.threshold.index.debug: 2s
#index.indexing.slowlog.threshold.index.trace: 500ms
################################## GC Logging ################################
#monitor.jvm.gc.young.warn: 1000ms
#monitor.jvm.gc.young.info: 700ms
#monitor.jvm.gc.young.debug: 400ms
#monitor.jvm.gc.old.warn: 10s
#monitor.jvm.gc.old.info: 5s
#monitor.jvm.gc.old.debug: 2s
################################## Security ################################
# Uncomment if you want to enable JSONP as a valid return transport on the
# http server. With this enabled, it may pose a security risk, so disabling
# it unless you need it is recommended (it is disabled by default).
#
#http.jsonp.enable: true
##################### Elasticsearch Configuration Example #####################
# This file contains an overview of various configuration settings,
# targeted at operations staff. Application developers should
# consult the guide at <http://elasticsearch.org/guide>.
#
# The installation procedure is covered at
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup.html>.
#
# Elasticsearch comes with reasonable defaults for most settings,
# so you can try it out without bothering with configuration.
#
# Most of the time, these defaults are just fine for running a production
# cluster. If you're fine-tuning your cluster, or wondering about the
# effect of certain configuration option, please _do ask_ on the
# mailing list or IRC channel [http://elasticsearch.org/community].
# Any element in the configuration can be replaced with environment variables
# by placing them in ${...} notation. For example:
#
#node.rack: ${RACK_ENV_VAR}
# For information on supported formats and syntax for the config file, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/setup-configuration.html>
################################### Cluster ###################################
# Cluster name identifies your cluster for auto-discovery. If you're running
# multiple clusters on the same network, make sure you're using unique names.
#
cluster.name: elasticsearch
#################################### Node #####################################
# Node names are generated dynamically on startup, so you're relieved
# from configuring them manually. You can tie this node to a specific name:
#
node.name: "Node data 1"
# Every node can be configured to allow or deny being eligible as the master,
# and to allow or deny to store the data.
#
# Allow this node to be eligible as a master node (enabled by default):
#
node.master: true
#
# Allow this node to store data (enabled by default):
#
node.data: false
# You can exploit these settings to design advanced cluster topologies.
#
# 1. You want this node to never become a master node, only to hold data.
# This will be the "workhorse" of your cluster.
#
# node.master: false
# node.data: true
#
# 2. You want this node to only serve as a master: to not store any data and
# to have free resources. This will be the "coordinator" of your cluster.
#
# node.master: true
# node.data: false
#
# 3. You want this node to be neither master nor data node, but
# to act as a "search load balancer" (fetching data from nodes,
# aggregating results, etc.)
#
#node.master: false
#node.data: false
# Use the Cluster Health API [http://localhost:9200/_cluster/health], the
# Node Info API [http://localhost:9200/_nodes] or GUI tools
# such as <http://www.elasticsearch.org/overview/marvel/>,
# <http://github.com/karmi/elasticsearch-paramedic>,
# <http://github.com/lukas-vlcek/bigdesk> and
# <http://mobz.github.com/elasticsearch-head> to inspect the cluster state.
# A node can have generic attributes associated with it, which can later be used
# for customized shard allocation filtering, or allocation awareness. An attribute
# is a simple key value pair, similar to node.key: value, here is an example:
#
#node.rack: rack314
# By default, multiple nodes are allowed to start from the same installation location
# to disable it, set the following:
#node.max_local_storage_nodes: 1
#################################### Index ####################################
# You can set a number of options (such as shard/replica options, mapping
# or analyzer definitions, translog settings, ...) for indices globally,
# in this file.
#
# Note, that it makes more sense to configure index settings specifically for
# a certain index, either when creating it or by using the index templates API.
#
# See <http://elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules.html> and
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html>
# for more information.
# Set the number of shards (splits) of an index (5 by default):
#
#index.number_of_shards: 5
# Set the number of replicas (additional copies) of an index (1 by default):
#
#index.number_of_replicas: 1
# Note, that for development on a local machine, with small indices, it usually
# makes sense to "disable" the distributed features:
#
#index.number_of_shards: 1
#index.number_of_replicas: 0
# These settings directly affect the performance of index and search operations
# in your cluster. Assuming you have enough machines to hold shards and
# replicas, the rule of thumb is:
#
# 1. Having more *shards* enhances the _indexing_ performance and allows to
# _distribute_ a big index across machines.
# 2. Having more *replicas* enhances the _search_ performance and improves the
# cluster _availability_.
#
# The "number_of_shards" is a one-time setting for an index.
#
# The "number_of_replicas" can be increased or decreased anytime,
# by using the Index Update Settings API.
#
# Elasticsearch takes care about load balancing, relocating, gathering the
# results from nodes, etc. Experiment with different settings to fine-tune
# your setup.
# Use the Index Status API (<http://localhost:9200/A/_status>) to inspect
# the index status.
#################################### Paths ####################################
# Path to directory containing configuration (this file and logging.yml):
#
#path.conf: /path/to/conf
# Path to directory where to store index data allocated for this node.
#
#path.data: /path/to/data
#
# Can optionally include more than one location, causing data to be striped across
# the locations (a la RAID 0) on a file level, favouring locations with most free
# space on creation. For example:
#
#path.data: /path/to/data1,/path/to/data2
# Path to temporary files:
#
#path.work: /path/to/work
# Path to log files:
#
#path.logs: /path/to/logs
# Path to where plugins are installed:
#
#path.plugins: /path/to/plugins
#################################### Plugin ###################################
# If a plugin listed here is not installed for current node, the node will not start.
#
#plugin.mandatory: mapper-attachments,lang-groovy
################################### Memory ####################################
# Elasticsearch performs poorly when JVM starts swapping: you should ensure that
# it _never_ swaps.
#
# Set this property to true to lock the memory:
#
#bootstrap.mlockall: true
# Make sure that the ES_MIN_MEM and ES_MAX_MEM environment variables are set
# to the same value, and that the machine has enough memory to allocate
# for Elasticsearch, leaving enough memory for the operating system itself.
#
# You should also make sure that the Elasticsearch process is allowed to lock
# the memory, eg. by using `ulimit -l unlimited`.
############################## Network And HTTP ###############################
# Elasticsearch, by default, binds itself to the 0.0.0.0 address, and listens
# on port [9200-9300] for HTTP traffic and on port [9300-9400] for node-to-node
# communication. (the range means that if the port is busy, it will automatically
# try the next port).
# Set the bind address specifically (IPv4 or IPv6):
#
network.bind_host: 127.0.0.2
# Set the address other nodes will use to communicate with this node. If not
# set, it is automatically derived. It must point to an actual IP address.
#
network.publish_host: 127.0.0.2
# Set both 'bind_host' and 'publish_host':
#
network.host: 127.0.0.2
# Set a custom port for the node to node communication (9300 by default):
#
#transport.tcp.port: 9300
# Enable compression for all communication between nodes (disabled by default):
#
#transport.tcp.compress: true
# Set a custom port to listen for HTTP traffic:
#
#http.port: 9200
# Set a custom allowed content length:
#
#http.max_content_length: 100mb
# Disable HTTP completely:
#
http.enabled: true
################################### Gateway ###################################
# The gateway allows for persisting the cluster state between full cluster
# restarts. Every change to the state (such as adding an index) will be stored
# in the gateway, and when the cluster starts up for the first time,
# it will read its state from the gateway.
# There are several types of gateway implementations. For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-gateway.html>.
# The default gateway type is the "local" gateway (recommended):
#
#gateway.type: local
# Settings below control how and when to start the initial recovery process on
# a full cluster restart (to reuse as much local data as possible when using shared
# gateway).
# Allow recovery process after N nodes in a cluster are up:
#
#gateway.recover_after_nodes: 1
# Set the timeout to initiate the recovery process, once the N nodes
# from previous setting are up (accepts time value):
#
#gateway.recover_after_time: 5m
# Set how many nodes are expected in this cluster. Once these N nodes
# are up (and recover_after_nodes is met), begin recovery process immediately
# (without waiting for recover_after_time to expire):
#
#gateway.expected_nodes: 2
############################# Recovery Throttling #############################
# These settings allow to control the process of shards allocation between
# nodes during initial recovery, replica allocation, rebalancing,
# or when adding and removing nodes.
# Set the number of concurrent recoveries happening on a node:
#
# 1. During the initial recovery
#
#cluster.routing.allocation.node_initial_primaries_recoveries: 4
#
# 2. During adding/removing nodes, rebalancing, etc
#
#cluster.routing.allocation.node_concurrent_recoveries: 2
# Set to throttle throughput when recovering (eg. 100mb, by default 20mb):
#
#indices.recovery.max_bytes_per_sec: 20mb
# Set to limit the number of open concurrent streams when
# recovering a shard from a peer:
#
#indices.recovery.concurrent_streams: 5
################################## Discovery ##################################
# Discovery infrastructure ensures nodes can be found within a cluster
# and master node is elected. Multicast discovery is the default.
# Set to ensure a node sees N other master eligible nodes to be considered
# operational within the cluster. This should be set to a quorum/majority of
# the master-eligible nodes in the cluster.
#
#discovery.zen.minimum_master_nodes: 1
# Set the time to wait for ping responses from other nodes when discovering.
# Set this option to a higher value on a slow or congested network
# to minimize discovery failures:
#
#discovery.zen.ping.timeout: 3s
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-zen.html>
# Unicast discovery allows to explicitly control which nodes will be used
# to discover the cluster. It can be used when multicast is not present,
# or to restrict the cluster communication-wise.
#
# 1. Disable multicast discovery (enabled by default):
#
#discovery.zen.ping.multicast.enabled: false
#
# 2. Configure an initial list of master nodes in the cluster
# to perform discovery when new nodes (master or data) are started:
#
#discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]
# EC2 discovery allows to use AWS EC2 API in order to perform discovery.
#
# You have to install the cloud-aws plugin for enabling the EC2 discovery.
#
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-ec2.html>
#
# See <http://elasticsearch.org/tutorials/elasticsearch-on-ec2/>
# for a step-by-step tutorial.
# GCE discovery allows to use Google Compute Engine API in order to perform discovery.
#
# You have to install the cloud-gce plugin for enabling the GCE discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-gce>.
# Azure discovery allows to use Azure API in order to perform discovery.
#
# You have to install the cloud-azure plugin for enabling the Azure discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-azure>.
################################## Slow Log ##################################
# Shard level query and fetch threshold logging.
#index.search.slowlog.threshold.query.warn: 10s
#index.search.slowlog.threshold.query.info: 5s
#index.search.slowlog.threshold.query.debug: 2s
#index.search.slowlog.threshold.query.trace: 500ms
#index.search.slowlog.threshold.fetch.warn: 1s
#index.search.slowlog.threshold.fetch.info: 800ms
#index.search.slowlog.threshold.fetch.debug: 500ms
#index.search.slowlog.threshold.fetch.trace: 200ms
#index.indexing.slowlog.threshold.index.warn: 10s
#index.indexing.slowlog.threshold.index.info: 5s
#index.indexing.slowlog.threshold.index.debug: 2s
#index.indexing.slowlog.threshold.index.trace: 500ms
################################## GC Logging ################################
#monitor.jvm.gc.young.warn: 1000ms
#monitor.jvm.gc.young.info: 700ms
#monitor.jvm.gc.young.debug: 400ms
#monitor.jvm.gc.old.warn: 10s
#monitor.jvm.gc.old.info: 5s
#monitor.jvm.gc.old.debug: 2s
################################## Security ################################
# Uncomment if you want to enable JSONP as a valid return transport on the
# http server. With this enabled, it may pose a security risk, so disabling
# it unless you need it is recommended (it is disabled by default).
#
#http.jsonp.enable: true
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment