Last active
November 10, 2020 19:51
-
-
Save mpatacchiola/f892afb2d178246af133851e42c8fefc to your computer and use it in GitHub Desktop.
Implementation of a Gaussian Mixture Model (GMM) for the bdims dataset. It plots the negative log-likelihood, distribution over data, and the fitted curves. The number of GMM components can be changed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.stats import norm | |
import scipy.stats as stats | |
import matplotlib.pyplot as plt | |
import matplotlib | |
def plot_distributions(data, data_sampled, mu, sigma, K, color="green", color_sampled="red", name='plot.png'): | |
matplotlib.rcParams['text.usetex'] = True | |
plt.rcParams.update({'font.size': 16}) | |
data_sampled = np.clip(data_sampled, np.min(data), np.max(data)) | |
plt.hist(data, bins=15, color=color, alpha=0.45, density=True) | |
plt.hist(data_sampled, bins=15, range=(np.min(data), np.max(data)), color=color_sampled, alpha=0.45, density=True) | |
for k in range(K): | |
curve = np.linspace(mu[k] - 10*sigma[k], mu[k] + 10*sigma[k], 100) | |
color = np.random.rand(3) | |
plt.plot(curve, stats.norm.pdf(curve, mu[k], sigma[k]), color=color, linestyle="--", linewidth=3) | |
plt.ylabel(r"$p(x)$") | |
plt.xlabel(r"$x$") | |
plt.tight_layout() | |
plt.xlim(20, 120) | |
plt.savefig(name, dpi=200) | |
plt.show() | |
def plot_likelihood(nll_list): | |
matplotlib.rcParams['text.usetex'] = True | |
plt.rcParams.update({'font.size': 16}) | |
plt.plot(np.arange(len(nll_list)), nll_list, color="black", linestyle="--", linewidth=3) | |
plt.ylabel(r"(negative) log-likelihood") | |
plt.xlabel(r"iteration") | |
plt.tight_layout() | |
plt.xlim(0, len(nll_list)) | |
plt.savefig('nll.png', dpi=200) | |
plt.show() | |
def sampler(pi, mu, sigma, N): | |
data = list() | |
for n in range(N): | |
k = np.random.choice(len(pi), p=pi) | |
sample = np.random.normal(loc=mu[k], scale=sigma[k]) | |
data.append(sample) | |
return data | |
def main(): | |
data = np.genfromtxt('./bdims.csv', delimiter=',', skip_header=1)#[:,-2] | |
data = data[:,-3] | |
N = data.shape[0] | |
K=2 # two components GMM | |
tot_iterations = 100 # stopping criteria | |
# Step-1 (Init) | |
mu = np.random.uniform(low=42.0, high=95.0, size=K) | |
sigma = np.random.uniform(low=5.0, high=10.0, size=K) | |
pi = np.ones(K) * (1.0/K) # mixing coefficients | |
r = np.zeros([K,N]) # responsibilities | |
nll_list = list() # store the neg log-likelihood | |
for iteration in range(tot_iterations): | |
# Step-2 (E-Step) | |
for k in range(K): | |
r[k,:] = pi[k] * norm.pdf(x=data, loc=mu[k], scale=sigma[k]) | |
r = r / np.sum(r, axis=0) #[K,N] -> [N] | |
# Step-3 (M-Step) | |
N_k = np.sum(r, axis=1) #[K,N] -> [K] | |
for k in range(K): | |
# update means | |
mu[k] = np.sum(r[k,:] * data) / N_k[k] | |
# update variances | |
numerator = r[k] * (data - mu[k])**2 | |
sigma[k] = np.sqrt(np.sum(numerator) / N_k[k]) | |
# update weights | |
pi = N_k/N | |
likelihood = 0.0 | |
for k in range(K): | |
likelihood += pi[k] * norm.pdf(x=data, loc=mu[k], scale=sigma[k]) | |
nll_list.append(-np.sum(np.log(likelihood))) | |
# Check for invalid negative log-likelihood (NLL) | |
# The NLL is invalid if NLL_t-1 < NLL_t | |
# Note that this can happen for round-off errors. | |
if(len(nll_list)>=2): | |
if(nll_list[-2]<nll_list[-1]): raise Exception("[ERROR] invalid NLL: "+str(nll_list[-2:])) | |
print("Iteration: " + str(iteration) + "; NLL: " + str(nll_list[-1])) | |
print("Mean " + str(mu) + "\nStd " + str(sigma) + "\nWeights " + str(pi) + "\n") | |
# Step-4 (Check) | |
if(iteration==tot_iterations-1): break # check iteration | |
plot_likelihood(nll_list) | |
data_gmm = sampler(pi, mu, sigma, N=1000) | |
plot_distributions(data, data_gmm, mu, sigma, K, color="green", color_sampled="red", name="plot_sampler.png") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment