Skip to content

Instantly share code, notes, and snippets.

@muupan
Last active Aug 29, 2015
Embed
What would you like to do?
#include <iostream>
#include <memory>
#include <random>
#include <caffe/caffe.hpp>
#include <glog/logging.h>
int main(int argc, char** argv) {
// glogの初期化
google::InitGoogleLogging(argv[0]);
// 教師データとして用いる入力データと目標データをfloat配列として準備する.
// 入力データ:2次元
// 目標データ:1次元
constexpr auto kMinibatchSize = 32;
constexpr auto kDataSize = kMinibatchSize * 10;
std::array<float, kDataSize * 2> input_data;
std::array<float, kDataSize> target_data;
std::mt19937 random_engine;
std::uniform_real_distribution<> dist(0.0, 1.0);
// 3x - 2y + 4 = target に従ってデータを生成する.
for (auto i = 0; i < kDataSize; ++i) {
const auto x = dist(random_engine);
const auto y = dist(random_engine);
const auto target = 3 * x - 2 * y + 4;
input_data[i * 2] = x;
input_data[i * 2 + 1] = y;
target_data[i] = target;
}
// MemoryDataLayerはメモリ上の値を出力できるDataLayer.
// 各MemoryDataLayerには入力データとラベルデータ(1次元の整数)の2つを与える必要があるが,
// ここでは回帰を行いたいので,入力データと目標データそれぞれを別のMemoryDataLayerで出力し,
// ラベルデータの代わりに使用されないダミーの値を与えておく.
std::array<float, kDataSize> dummy_data;
std::fill(dummy_data.begin(), dummy_data.end(), 0.0);
// Solverの設定をテキストファイルから読み込む
caffe::SolverParameter solver_param;
caffe::ReadProtoFromTextFileOrDie("solver.prototxt", &solver_param);
const auto solver =
std::shared_ptr<caffe::Solver<float>>(
caffe::GetSolver<float>(solver_param));
const auto net = solver->net();
// 入力データをMemoryDataLayer"input"にセットする
const auto input_layer =
boost::dynamic_pointer_cast<caffe::MemoryDataLayer<float>>(
net->layer_by_name("input"));
assert(input_layer);
input_layer->Reset(input_data.data(), dummy_data.data(), kDataSize);
// 目標データをMemoryDataLayer"target"にセットする
const auto target_layer =
boost::dynamic_pointer_cast<caffe::MemoryDataLayer<float>>(
net->layer_by_name("target"));
assert(target_layer);
target_layer->Reset(target_data.data(), dummy_data.data(), kDataSize);
// Solverの設定通りに学習を行う
solver->Solve();
// 学習されたパラメータを出力してみる
// ax + by + c = target
const auto ip_blobs = net->layer_by_name("ip")->blobs();
const auto learned_a = ip_blobs[0]->cpu_data()[0];
const auto learned_b = ip_blobs[0]->cpu_data()[1];
const auto learned_c = ip_blobs[1]->cpu_data()[0];
std::cout << learned_a << "x + " << learned_b << "y + " << learned_c
<< " = target" << std::endl;
// 学習されたモデルを使って予測してみる
// x = 10, y = 20
std::array<float, kDataSize * 2> sample_input;
sample_input[0] = 10;
sample_input[1] = 20;
input_layer->Reset(sample_input.data(), dummy_data.data(), kDataSize);
net->ForwardPrefilled(nullptr);
std::cout << "10a + 20b + c = " << net->blob_by_name("ip")->cpu_data()[0] << std::endl;
}
layers {
name: "input"
type: MEMORY_DATA
top: "input"
top: "dummy_label1"
memory_data_param {
batch_size: 32
channels: 2
height: 1
width: 1
}
}
layers {
name: "ip"
type: INNER_PRODUCT
bottom: "input"
top: "ip"
inner_product_param {
num_output: 1
weight_filler {
type: "constant"
value: 0
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "target"
type: MEMORY_DATA
top: "target"
top: "dummy_label2"
memory_data_param {
batch_size: 32
channels: 1
height: 1
width: 1
}
}
layers {
name: "loss"
type: EUCLIDEAN_LOSS
bottom: "ip"
bottom: "target"
top: "loss"
}
net: "net.prototxt"
solver_type: SGD
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 1000
max_iter: 4000
momentum: 0.9
display: 1000
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment