Skip to content

Instantly share code, notes, and snippets.

View mzmmoazam's full-sized avatar

Moazam mzmmoazam

View GitHub Profile
@mzmmoazam
mzmmoazam / gprmax_colab_template.ipynb
Created April 23, 2021 08:46
gprMax_colab_template.ipynb
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@mzmmoazam
mzmmoazam / youtube_in_vlc.py
Created May 15, 2020 17:55
play youtube playlist in vlc
'''
Well, it is to play youtube song playlists in your laptop (VLC).
you will say why would I do, it is much better
Try it
prerequisites
add vlc to your PATH
pip install pytube3
@mzmmoazam
mzmmoazam / csv2pdf.py
Created January 25, 2017 18:51
To convert csv to pdf reports using Reportlab.
import csv
from reportlab.platypus import Paragraph,SimpleDocTemplate
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.graphics.charts.piecharts import Pie
from reportlab.lib.colors import brown,blue
from reportlab.graphics.charts.legends import Legend
from reportlab.graphics.shapes import Drawing
from reportlab.lib.colors import black
# THIS FUNCTION CALCULATES THE PERCENTILE
@mzmmoazam
mzmmoazam / Nthmin.py
Created December 27, 2018 04:46
Optimized program to find Nth minimum in a unsorted array.
def Nthmin(list, n):
piot = list[0]
min_list, max_list = [], []
for i in range(1, len(list)):
if list[i] < piot:
min_list.append(list[i])
else:
max_list.append(list[i])
if len(min_list) >= n and len(min_list) != 0:
return Nthmin(min_list, n)
@mzmmoazam
mzmmoazam / file_traversal.py
Created July 17, 2018 07:46
Apply DFS and BFS on file system,
from os import listdir,sep
from os.path import isfile,isdir,split,join
class Traversal(object):
def __init__(self,starting_node,dfs=True,bfs=False):
'''
:param starting_node: give absolute path of the directory to be travesed
:param dfs: set True for Debth first traversal ; default : True
:param bfs: set true for breadth first traversal ; default : False
0 7 5 mar fri 86.2 26.2 94.3 5.1 8.2 51 6.7 0.0 0.0
1 7 4 oct tue 90.6 35.4 669.1 6.7 18.0 33 0.9 0.0 0.0
2 7 4 oct sat 90.6 43.7 686.9 6.7 14.6 33 1.3 0.0 0.0
3 8 6 mar fri 91.7 33.3 77.5 9.0 8.3 97 4.0 0.2 0.0
4 8 6 mar sun 89.3 51.3 102.2 9.6 11.4 99 1.8 0.0 0.0
5 8 6 aug sun 92.3 85.3 488.0 14.7 22.2 29 5.4 0.0 0.0
6 8 6 aug mon 92.3 88.9 495.6 8.5 24.1 27 3.1 0.0 0.0
7 8 6 aug mon 91.5 145.4 608.2 10.7 8.0 86 2.2 0.0 0.0
8 8 6 sep tue 91.0 129.5 692.6 7.0 13.1 63 5.4 0.0 0.0
9 7 5 sep sat 92.5 88.0 698.6 7.1 22.8 40 4.0 0.0 0.0
@mzmmoazam
mzmmoazam / naive_bayes.py
Last active May 13, 2018 16:17
A simple naive bayes implementation
import csv, random
class NaiveBayes(object):
def __init__(self, filename, split_ratio):
'''
:param filename: a csv filename with absolute or full path
:param split_ratio: test to train ratio
'''
@mzmmoazam
mzmmoazam / Turkish_2_Eng.py
Created April 2, 2018 12:15
This gist converts Turkish audio to English audio.
import Algorithmia, speech_recognition as sr, pyttsx
# Algorthmia Api key and end point
client = Algorithmia.client('simCM+BqJzKSw/iMrQsR/OTRwVE1')
algo = client.algo('translation/GoogleTranslate/0.1.1')
# pyttsx engine config
speech_engine = pyttsx.init('sapi5') # see http://pyttsx.readthedocs.org/en/latest/engine.html#pyttsx.init
speech_engine.setProperty('rate', 150)
@mzmmoazam
mzmmoazam / Eng_to_turkish.py
Created April 2, 2018 12:13
This gist uses your computer as a personal translator; converts English audio to Turkish audio.
import speech_recognition as sr, pyttsx
from googletrans import Translator
# pyttsx engine config
speech_engine = pyttsx.init('sapi5') # see http://pyttsx.readthedocs.org/en/latest/engine.html#pyttsx.init
speech_engine.setProperty('rate', 150)
# translator object
translator = Translator()
@mzmmoazam
mzmmoazam / hack_openai.py
Created October 28, 2017 14:21
used mlp and lstm on the openai's gym #cartpole games.
import gym
import random
import numpy as np
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.data_utils import to_categorical
from tflearn.layers.estimator import regression
from statistics import median, mean
from collections import Counter
import glob