An alternative version of the code used in the excellent Win-Vector article: Worry about correctness and repeatability, not p-values
Worry about correctness and repeatability, not p-values.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# generate the input data | |
input_data <- data.frame(muscle_strength = c("lower", "middle", "upper"), num_deaths = c(214, 143, 146), group_size = c(2920, 2919, 2923)) | |
input_data$mortality_rate <- input_data$num_deaths / input_data$group_size # this is a ratio, the sample proportion, not the population probability | |
input_data$standard_error <- sqrt(input_data$mortality_rate*(1-input_data$mortality_rate)/input_data$group_size) | |
# visualize it | |
library(plyr) | |
viz_data <- ddply(input_data, 1, function(group){ | |
range_num_deaths <- 0:300 | |
df <- data.frame(muscle_strength = group$muscle_strength, | |
num_deaths = range_num_deaths, | |
mortality_rate = range_num_deaths/group$group_size , | |
probability = sapply(range_num_deaths, function(x) dbinom(x, group$group_size, group$mortality_rate))) | |
df | |
}) | |
library(ggplot2) | |
ggplot(viz_data, aes(mortality_rate, probability)) + | |
geom_area(aes(fill = muscle_strength), alpha=.5) + | |
geom_vline(data = input_data, aes(xintercept = mortality_rate, color = muscle_strength), linetype = 2) + xlim(.025,.1) + | |
geom_text(data = input_data, aes(c(.079, .045, .054), 2e-3, label = paste0(signif(mortality_rate,2)*100, "%"), color = muscle_strength), size = 8) | |
# Fit a logistic regression model | |
model_data <- data.frame(muscle_strength=rep(levels(input_data$muscle_strength), times=2), outcome = rep(c("survived","died"), each = 3), counts = c(input_data$group_size - input_data$num_deaths, input_data$num_deaths)) | |
model_data$muscle_strength <- relevel(model_data$muscle_strength, ref = "upper") | |
model <- glm(outcome == "died" ~ muscle_strength, weights = model_data$counts, family = binomial(link = "logit"), data = model_data) | |
summary(model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment