Last active
January 9, 2019 02:06
-
-
Save nafeesb/0a15578f1466cd8862ffb932348521c3 to your computer and use it in GitHub Desktop.
pytorch 1d regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
from torch import nn | |
from itertools import count | |
import time | |
#%% | |
# make some data | |
N = 100 | |
def func(x): | |
y = 1.789 * x + 5.3 | |
return y | |
def make_data(numsamp): | |
xdom = np.random.rand(numsamp).astype(np.float32) | |
offset = (np.random.rand(numsamp).astype(np.float32) * 2 -1) * 0.15 | |
y = func(xdom) + offset | |
return xdom.reshape(-1,1), y.reshape(-1,1) | |
train = make_data(N) | |
truth = func(train[0]) | |
#%% | |
# linear regression for 1 variable | |
input_dim = 1 | |
output_dim = 1 | |
device = torch.device('cpu') | |
#device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) | |
x = torch.from_numpy(train[0]).to(device) | |
#x = x.view(10,-1,1) | |
#y = torch.from_numpy(train[1]).to(device) # adding noise to data | |
y = torch.from_numpy(truth).to(device) | |
#y = y.view(10,-1,1) | |
#%% | |
# Structured Model | |
class LinSolve(nn.Module): | |
def __init__(self,_inD,_outD): | |
super(LinSolve,self).__init__() | |
self.fc1 = nn.Linear(_inD,_outD) | |
def forward(self,x): | |
x = self.fc1(x) | |
return x | |
def trainLin(npX,npY,batchsize=10,maxEpoch=5000): | |
model = LinSolve(1,1) | |
betas = (0.9, 0.999) | |
lr_decay = 1.0 | |
lr = 0.001 | |
optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas) | |
X = torch.from_numpy(npX) | |
Y = torch.from_numpy(npY) | |
print(X.shape) | |
dataset = torch.utils.data.TensorDataset(X,Y) | |
loader = torch.utils.data.DataLoader(dataset, batch_size=batchsize, shuffle=True) | |
loss_func = nn.MSELoss() | |
t0 = time.time() | |
for epoch in range(maxEpoch): | |
for batch_idx, (x,y) in enumerate(loader): | |
optimizer.zero_grad() | |
pred = model(x) | |
loss = loss_func(pred,y) | |
loss.backward() | |
optimizer.step() | |
with torch.no_grad(): | |
out = model(X) | |
full_loss = loss_func(out,Y).item() | |
if full_loss < 1e-6: | |
break | |
t1 = time.time() | |
print('{} epoch in {} sec\nLoss: {}'.format( epoch, t1-t0, full_loss )) | |
return model,out.data.numpy() | |
#%% | |
#model = nn.Sequential( nn.Linear(input_dim, output_dim) ).to(device) | |
model = nn.Linear(input_dim, output_dim).to(device) | |
loss_func = nn.MSELoss() | |
learning_rate = 1e-4 | |
optimizer = torch.optim.Adam( model.parameters(), lr=learning_rate ) | |
#%% | |
t0 = time.time() | |
for epoch in count(1):#range(20000): | |
# forward prediction pass | |
y_pred = model(x) | |
# compute loss | |
loss = loss_func(y_pred, y) | |
# back prop | |
optimizer.zero_grad() | |
loss.backward() | |
if loss.item() < 1e-6 or epoch > 100000: | |
break | |
# update | |
optimizer.step() | |
t1 = time.time() | |
#%% | |
print('{} epoch in {} sec'.format( epoch, t1-t0 )) | |
x = x.view(-1,1) | |
pred = model(x).data.cpu().numpy() | |
plt.plot( train[0], pred, 'r+') | |
plt.plot( train[0], truth, 'g+') | |
print(model.state_dict()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment