-
-
Save naturale0/9ecb645eb4abc0412a839a83fd278f9c to your computer and use it in GitHub Desktop.
Generate M-spline and I-spline functions in Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Python code to generate M-splines and I-splines. | |
References | |
---------- | |
Ramsay, J. O. (1988). Monotone regression splines in action. | |
Statistical science, 3(4), 425-441. | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def mspline_grid(order, num_basis_funcs, nt): | |
""" | |
Generate a set of M-spline basis functions with evenly | |
spaced knots. | |
Parameters | |
---------- | |
order : int | |
Order parameter of the splines. | |
num_basis_funcs : int | |
Number of desired basis functions. Note that we | |
require num_basis_funcs >= order. | |
nt : int | |
Number of points to evaluate the basis functions. | |
Returns | |
------- | |
spine_basis : array | |
Matrix with shape (num_basis_funcs, nt), holding the | |
desired spline basis functions. | |
""" | |
# Determine number of interior knots. | |
num_interior_knots = num_basis_funcs - order | |
if num_interior_knots < 0: | |
raise ValueError( | |
"Spline `order` parameter cannot be larger " | |
"than `num_basis_funcs` parameter." | |
) | |
# Fine grid of numerically evaluated points. | |
x = np.linspace(0, 1 - 1e-6, nt) | |
# Set of spline knots. We need to add extra knots to | |
# the end to handle boundary conditions for higher-order | |
# spline bases. See Ramsay (1988) cited above. | |
# | |
# Note - this is poorly explained on most corners of the | |
# internet that I've found. | |
knots = np.concatenate(( | |
np.zeros(order - 1), | |
np.linspace(0, 1, num_interior_knots + 2), | |
np.ones(order - 1), | |
)) | |
# Evaluate and stack each basis function. | |
return np.row_stack( | |
[mspline(x, order, i, knots) for i in range(num_basis_funcs)] | |
) | |
def mspline(x, k, i, T): | |
""" | |
Compute M-spline basis function `i` at points `x` for a spline | |
basis of order-`k` with knots `T`. | |
Parameters | |
---------- | |
x : array | |
Vector holding points to evaluate the spline. | |
""" | |
# Boundary conditions. | |
if (T[i + k] - T[i]) < 1e-6: | |
return np.zeros_like(x) | |
# Special base case of first-order spline basis. | |
elif k == 1: | |
v = np.zeros_like(x) | |
v[(x >= T[i]) & (x < T[i + 1])] = 1 / (T[i + 1] - T[i]) | |
return v | |
# General case, defined recursively | |
else: | |
return k * ( | |
(x - T[i]) * mspline(x, k - 1, i, T) | |
+ (T[i + k] - x) * mspline(x, k - 1, i + 1, T) | |
) / ((k-1) * (T[i + k] - T[i])) | |
def ispline_grid(order, num_basis_funcs, nt): | |
""" | |
Generate a set of I-spline basis functions with evenly | |
spaced knots. | |
Parameters | |
---------- | |
order : int | |
Order parameter of the splines. | |
num_basis_funcs : int | |
Number of desired basis functions. Note that we | |
require num_basis_funcs >= order. | |
nt : int | |
Number of points to evaluate the basis functions. | |
Returns | |
------- | |
spine_basis : array | |
Matrix with shape (num_basis_funcs, nt), holding the | |
desired spline basis functions. | |
""" | |
# Determine number of interior knots. | |
num_interior_knots = num_basis_funcs - order | |
if num_interior_knots < 0: | |
raise ValueError( | |
"Spline `order` parameter cannot be larger " | |
"than `num_basis_funcs` parameter." | |
) | |
# Fine grid of numerically evaluated points. | |
x = np.linspace(0, 1 - 1e-6, nt) | |
# Set of spline knots. We need to add extra knots to | |
# the end to handle boundary conditions for higher-order | |
# spline bases. See Ramsay (1988) cited above. | |
# | |
# Note - this is poorly explained on most corners of the | |
# internet that I've found. | |
knots = np.concatenate(( | |
np.zeros(order), | |
np.linspace(0, 1, num_interior_knots + 2), | |
np.ones(order), | |
)) | |
# Evaluate and stack each basis function. | |
return np.row_stack( | |
[ispline(x, order, i, knots) for i in range(num_basis_funcs)] | |
) | |
def ispline(x, k, i, T): | |
""" | |
Compute I-spline basis function `i` at points `x` for a spline | |
basis of order-`k` with knots `T`. | |
Parameters | |
---------- | |
x : array | |
Vector holding points to evaluate the spline. | |
""" | |
# index j where t_j ≤ x < t_{j+1} | |
i += 1 | |
j = np.array([np.argwhere(T <= xi)[-1, 0] if T[0] <= xi else -1 for xi in x]) | |
# Boundary conditions | |
v = np.zeros_like(x) | |
v[j-k+1 > i] = 1 | |
# General case, defined by M-spline | |
j_valid = j[(j-k+1 <= i) & (i <= j)] | |
x_valid = x[(j-k+1 <= i) & (i <= j)] | |
# (T[i+k] - t[i-1]) ~ (T[j+k] - t[j-1]) | |
Tms = [T[(i+k+1):(j_+k+1+1)] - T[i:(j_+1)] for j_ in j_valid] | |
# M_i(x|k+1,t) ~ M_j(x|k+1,t) | |
Mms = [np.array([mspline(x_, k+1, m, T) for m in range(i, j_+1)]) \ | |
for x_, j_ in zip(x_valid, j_valid)] | |
v[(j-k+1 <= i) & (i <= j)] = [(Tm * Mm).sum()/(k+1) for Tm, Mm in zip(Tms, Mms)] | |
return v | |
# Test code | |
if __name__ == "__main__": | |
# Plot basis funcs, varying the order parameter. | |
fig, axes = plt.subplots(1, 3, figsize=(10, 3)) | |
for k, ax in enumerate(axes): | |
order = k + 1 | |
# I-spline | |
ax.plot(ispline_grid(order, 7, 1000).T) | |
# # M-spline | |
# ax.plot(mspline_grid(order, 7, 1000).T) | |
ax.set_yticks([]) | |
ax.set_title(f"order-{order}") | |
plt.suptitle("I-spline") | |
fig.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment