Skip to content

Instantly share code, notes, and snippets.


Sihyung Park naturale0

View GitHub Profile
omz /
Last active Jun 21, 2020 — forked from alessaba/
# coding: utf-8
from objc_util import *
import threading
NSBundle = ObjCClass('NSBundle')
LocalAuthentication = NSBundle.bundleWithPath_('/System/Library/Frameworks/LocalAuthentication.framework')
LAContext = ObjCClass('LAContext')
# authenticate() will raise one of these exceptions when authentication
import itertools
import torch
from torchtext.experimental.datasets.translation import DATASETS, TranslationDataset
from torchtext.vocab import build_vocab_from_iterator
from torchtext.experimental.functional import (
from import get_tokenizer
gatopeich /
Last active Aug 4, 2021
Install Jupyter iPython Notebook on Android via Termux
pkg upgrade
# Install runtime deps
pkg install python libzmq libcrypt
# Add build deps
pkg install python-dev libzmq-dev libcrypt-dev clang
pip3 install -U pip
pip3 install pyzmq --install-option="--zmq=/usr/lib"
pip3 install jupyter
peterhurford / install_xelatex_on_mac.txt
Created Aug 21, 2020
How to install latex and xelatex on Mac so that Jupyter "Download as PDF" will work
View install_xelatex_on_mac.txt
brew install pandoc
brew tap homebrew/cask
brew cask install basictex
eval "$(/usr/libexec/path_helper)"
# Update $PATH to include `/usr/local/texlive/2020basic/bin/x86_64-darwin`
sudo tlmgr update --self
sudo tlmgr install texliveonfly
sudo tlmgr install xelatex
sudo tlmgr install adjustbox
sudo tlmgr install tcolorbox
agramfort /
Last active Sep 3, 2021
LOWESS : Locally weighted regression
This module implements the Lowess function for nonparametric regression.
lowess Fit a smooth nonparametric regression curve to a scatterplot.
For more information, see
William S. Cleveland: "Robust locally weighted regression and smoothing
scatterplots", Journal of the American Statistical Association, December 1979,
HarshTrivedi /
Last active Sep 3, 2021 — forked from Tushar-N/
Minimal tutorial on packing (pack_padded_sequence) and unpacking (pad_packed_sequence) sequences in pytorch.
import torch
from torch import LongTensor
from torch.nn import Embedding, LSTM
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
## We want to run LSTM on a batch of 3 character sequences ['long_str', 'tiny', 'medium']
# Step 1: Construct Vocabulary
# Step 2: Load indexed data (list of instances, where each instance is list of character indices)
# Reset Parallels Desktop's trial and generate a casual email address to register a new user
rm /private/var/root/Library/Preferences/com.parallels.desktop.plist /Library/Preferences/Parallels/licenses.xml
jot -w -r 1

tmux cheat sheet

(C-x means ctrl+x, M-x means alt+x)

Prefix key

The default prefix is C-b. If you (or your muscle memory) prefer C-a, you need to add this to ~/.tmux.conf:

# remap prefix to Control + a
View tmux-cheatsheet.markdown

tmux shortcuts & cheatsheet

start new:


start new with session name:

tmux new -s myname