Skip to content

Instantly share code, notes, and snippets.

@nbro
Last active January 5, 2019 21:20
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save nbro/83de25fc6ccb85588883f8e568b68f7e to your computer and use it in GitHub Desktop.
Save nbro/83de25fc6ccb85588883f8e568b68f7e to your computer and use it in GitHub Desktop.
PyTorch example to train a CNN on MNIST using VisualDL for logging
# It takes about 8 minutes to train this model and obtain 99% accuracy.
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import time
import datetime
import argparse
from visualdl import LogWriter
log_writer = LogWriter("./log", sync_cycle=1000)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(args, model, device, train_loader, optimizer, epoch, train_losses):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# Forward pass.
output = model(data)
# Negative log-likelihood
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch,
batch_idx * len(data),
# Number of training example seen so far
len(train_loader.dataset),
# Total number of training examples
100. * batch_idx / len(train_loader),
# Percentage of training examples
loss.item()))
train_losses.add_record(epoch, float(loss.item()))
def test(args, model, device, test_loader, epoch, test_losses, test_accuracies):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
# torch.onnx.export(model, test_loader.dataset, "pytorch_mnist_{}.onnx".format(epoch))
test_loss /= len(test_loader.dataset)
test_accuracy = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), test_accuracy))
test_losses.add_record(epoch, float(test_loss))
test_accuracies.add_record(epoch, float(test_accuracy))
def to_time(seconds):
return str(datetime.timedelta(seconds=seconds))
def get_mnist_dataset(train=True, download=False):
# Apply two transforms to the data.
t = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
return datasets.MNIST('../data', train=train, download=download, transform=t)
def get_argument_parser():
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
return parser.parse_args()
def main():
# Training settings
args = get_argument_parser()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(get_mnist_dataset(download=True),
batch_size=args.batch_size,
shuffle=True,
**kwargs)
test_loader = torch.utils.data.DataLoader(get_mnist_dataset(train=False),
batch_size=args.test_batch_size,
shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
t0 = time.time()
with log_writer.mode("train") as logger:
train_losses = logger.scalar("scalars/train_loss")
with log_writer.mode("test") as logger:
test_losses = logger.scalar("scalars/test_loss")
test_accuracies = logger.scalar("scalars/test_accuracy")
for epoch in range(1, args.epochs + 1):
t1 = time.time()
train(args, model, device, train_loader, optimizer, epoch, train_losses)
test(args, model, device, test_loader, epoch, test_losses, test_accuracies)
print('Epoch lasted: {} seconds'.format(to_time(time.time() - t1)))
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
print('Total time: {} seconds'.format(to_time(time.time() - t0)))
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment