Last active
December 11, 2024 18:44
-
-
Save ndrezn/65197e96171d3607a6333d58ecf026e2 to your computer and use it in GitHub Desktop.
Performance analysis and charts for https://plotly.com/blog/chart-smarter-not-harder-universal-dataframe-support/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Script for generating figures following performance_analysis.py | |
# Authors: @ndrezn @emilykl | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def read_and_clean_df(file_path): | |
df = pd.read_csv(file_path) | |
# In the environment column, replace "venv/final-5.24.1" with "v5.24" | |
# and "venv/final-6.0.0rc0" with "v6.0" | |
df['Environment'] = df['Environment'].replace( | |
{ | |
"venv/final-5.24.1": "v5.24", | |
"venv/final-6.0.0rc0": "v6.0" | |
} | |
) | |
# Add "px." to the beginning of each value in the "Chart type" column | |
df['Chart type'] = "px." + df['Chart type'] | |
# Aggregate by "Chart type", "Dataframe type", and "Environment" columns | |
# For each column, calculate the mean, min, and max of the "Time (s)" column | |
df_grouped = df.groupby(["Chart type", "Dataframe type", "Environment"]).agg( | |
{ | |
"Time (s)": ["mean", "min", "max"] | |
} | |
) | |
# Flatten everything so it's just a normal table | |
df_grouped = df_grouped.reset_index() | |
# Flatten the column names as well | |
df_grouped.columns = ["Chart type", "Dataframe type", "Environment", "Mean Time (s)", "Min Time (s)", "Max Time (s)"] | |
df_grouped["error_y"] = df_grouped["Max Time (s)"] - df_grouped["Mean Time (s)"] | |
df_grouped["error_y_minus"] = -(df_grouped["Min Time (s)"] - df_grouped["Mean Time (s)"]) | |
return df_grouped | |
def make_heatmap(df_grouped): | |
pivot_data = df_grouped.pivot_table( | |
index=["Chart type", "Dataframe type"], columns="Environment", values="Mean Time (s)" | |
).reset_index() | |
pivot_data["Improvement (%)"] = ( | |
(pivot_data["v5.24"] - pivot_data["v6.0"]) / pivot_data["v5.24"] | |
) * 100 | |
pivot_data["Improvement Factor"] = ( | |
pivot_data["v5.24"] / pivot_data["v6.0"] | |
) | |
# heatmap_data_percentage = pivot_data.pivot( | |
# index="Chart type", columns="Dataframe type", values="Improvement (%)" | |
# ) | |
heatmap_data_factor = pivot_data.pivot( | |
index="Chart type", columns="Dataframe type", values="Improvement Factor" | |
) | |
# Filter to a limited set of chart types (column "Chart type") | |
chart_types = ["px.scatter", "px.line", "px.bar", "px.box", "px.histogram"] | |
heatmap_data_factor = heatmap_data_factor[heatmap_data_factor.index.isin(chart_types)] | |
fig = go.Figure( | |
data=go.Heatmap( | |
z=heatmap_data_factor.values, | |
x=heatmap_data_factor.columns, | |
y=heatmap_data_factor.index, | |
colorscale = ["#CFCDEB", "#675AFF"], | |
# Hide colorbar | |
showscale=False, | |
text=[[f"{val:.1f}x" for val in row] for row in heatmap_data_factor.values], | |
hoverinfo="text", | |
) | |
) | |
fig.update_layout( | |
title=dict( | |
text="Performance improvement of Plotly v6.0 over v5.24 for large datasets", | |
x=0.5, | |
subtitle=dict( | |
text="Reduction factor in time required to generate a plot object for a 1-million-row dataframe", | |
font_color="#888888", | |
font_style="italic", | |
), | |
), | |
xaxis_title="Dataframe type", | |
yaxis_title="Chart type", | |
) | |
fig.update_traces( | |
text=[[f"{val:.1f}x" for val in row] for row in heatmap_data_factor.values], | |
texttemplate="%{text}", | |
) | |
return fig | |
def make_bar_chart(df_grouped): | |
df_for_bar = df_grouped.copy() | |
chart_types = ["px.scatter", "px.line", "px.bar", "px.box", "px.histogram"] | |
df_for_bar = df_for_bar[df_for_bar["Chart type"].isin(chart_types)] | |
fig = px.bar( | |
df_for_bar, | |
x="Chart type", | |
y="Mean Time (s)", | |
color="Environment", | |
facet_col="Dataframe type", | |
barmode="group", | |
title="Time to generate Plotly Express charts for 1 million rows", | |
color_discrete_map={"v5.24": "#FFA15A", "v6.0": "#675AFF"}, | |
) | |
# Set titles of subplots | |
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) | |
# Remove x-axis titles | |
fig.update_xaxes(title_text="") | |
# Set y-axis title, but ONLY for first subplot | |
fig.update_yaxes(title_text="Time (seconds)", row=1, col=1) | |
# Set legend title | |
fig.update_layout(legend_title="Plotly version") | |
# Center plot title | |
fig.update_layout(title_x=0.5) | |
return fig | |
if __name__ == '__main__': | |
df_grouped = read_and_clean_df("performance_results_final_ALL_CHARTS.csv") | |
fig_heatmap = make_heatmap(df_grouped) | |
fig_bar = make_bar_chart(df_grouped) | |
fig_heatmap.show() | |
fig_bar.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Script for testing time to generate various Ploty Express charts | |
# Authors: @ndrezn @emilykl | |
# Note: The script is intended to be run in various virtual environments with | |
# different sets of dependencies installed; hence the reference to environments | |
# in the usage instructions. "Environment" can be any string describing the testing scenario | |
import sys | |
import time | |
from functools import wraps | |
import os | |
import polars as pl | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
try: | |
import orjson | |
except ImportError: | |
orjson = None | |
np.random.seed(42) | |
REPEAT = 21 | |
IGNORE_FIRST = True | |
TO_JSON = True | |
NUM_ROWS=1_000_000 | |
# Decorator to time a function multiple times and return the average time | |
def timeit(repeat=1, ignore_first=False): | |
def decorator(func): | |
@wraps(func) | |
def wrapper(*args, **kwargs): | |
total_times = [] | |
for i, _ in enumerate(range(repeat)): | |
start_time = time.time() # Record start time | |
_ = func(*args, **kwargs) | |
end_time = time.time() # Record end time | |
if ignore_first and i == 0: # Ignore the first run if ignore_first is True | |
continue | |
total_times.append(end_time - start_time) # Keep a list of all total times | |
return total_times | |
return wrapper | |
return decorator | |
# Generate a large dataset as a dict, with additional columns for color and facet | |
def generate_large_dataset_as_dict(num_rows=1_000_000): | |
return { | |
"x": np.random.uniform(0, 100, num_rows), | |
"y": np.random.uniform(0, 100, num_rows), | |
"z": np.random.uniform(0, 100, num_rows), | |
"category": np.random.choice(["A", "B", "C"], num_rows), # Original category | |
"colorby": np.random.choice(["Group 1", "Group 2"], num_rows), # Color by group | |
"facetby": np.random.choice( | |
["Region 1", "Region 2"], num_rows | |
), # Facet by region | |
} | |
# Make a Polars DataFrame from a dict | |
def make_polars(dataset_as_dict): | |
return pl.DataFrame(dataset_as_dict) | |
# Make a Pandas DataFrame from a dict | |
def make_pandas(dataset_as_dict): | |
return pd.DataFrame(dataset_as_dict) | |
# Make a PyArrow Table from a dict | |
def make_pyarrow(dataset_as_dict): | |
return pl.DataFrame(dataset_as_dict).to_arrow() | |
dataset_as_dict = generate_large_dataset_as_dict(num_rows=NUM_ROWS) | |
pandas_df = make_pandas(dataset_as_dict) | |
polars_df = make_polars(dataset_as_dict) | |
pyarrow_table = make_pyarrow(dataset_as_dict) | |
# Scatter plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_scatter(df, to_json=True): | |
fig = px.scatter( | |
df, | |
x="x", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Scatter Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Scatter 3d plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_scatter_3d(df, to_json=True): | |
fig = px.scatter_3d( | |
df, | |
x="x", | |
y="y", | |
z="z", | |
color="colorby", # Color by the "colorby" column | |
# facet_col="facetby", # Facet by the "facetby" column | |
# facet is NOT supported for scatter3D plots | |
title="Scatter 3D Plot with Color", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Scatter polar plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_scatter_polar(df, to_json=True): | |
fig = px.scatter_polar( | |
df, | |
r="x", | |
theta="y", | |
color="colorby", # Color by the "colorby" column | |
# facet_col="facetby", # Facet by the "facetby" column | |
# facet is NOT supported for scatter polar plots | |
title="Scatter Polar Plot with Color", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Scatter ternary plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_scatter_ternary(df, to_json=True): | |
fig = px.scatter_ternary( | |
df, | |
a="x", | |
b="y", | |
c="z", | |
color="colorby", # Color by the "colorby" column | |
# facet_col="facetby", # Facet by the "facetby" column | |
# facet is NOT supported for scatter ternary plots | |
title="Scatter Ternary Plot with Color", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Line plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_line(df, to_json=True): | |
fig = px.line( | |
df, | |
x="x", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Line Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Line 3d plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_line_3d(df, to_json=True): | |
fig = px.line_3d( | |
df, | |
x="x", | |
y="y", | |
z="z", | |
color="colorby", # Color by the "colorby" column | |
# facet_col="facetby", # Facet by the "facetby" column | |
# facet is NOT supported for line 3D plots | |
title="Line 3D Plot with Color", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Area plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_area(df, to_json=True): | |
fig = px.area( | |
df, | |
x="x", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Area Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Bar plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_bar(df, to_json=True): | |
fig = px.bar( | |
df, | |
x="category", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Bar Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Bar polar plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_bar_polar(df, to_json=True): | |
fig = px.bar_polar( | |
df, | |
r="y", | |
theta="category", | |
color="colorby", # Color by the "colorby" column | |
# facet_col="facetby", # Facet by the "facetby" column | |
# facet is NOT supported for bar polar plots | |
title="Bar Polar Plot with Color", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Violin plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_violin(df, to_json=True): | |
fig = px.violin( | |
df, | |
x="category", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Violin Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Box plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_box(df, to_json=True): | |
fig = px.box( | |
df, | |
x="category", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Box Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# ECDF plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_ecdf(df, to_json=True): | |
fig = px.ecdf( | |
df, | |
x="x", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="ECDF Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Strip plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_strip(df, to_json=True): | |
fig = px.strip( | |
df, | |
x="category", | |
y="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Strip Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Histogram plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_histogram(df, to_json=True): | |
fig = px.histogram( | |
df, | |
x="x", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Histogram Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Pie chart | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_pie(df, to_json=True): | |
fig = px.pie( | |
df, | |
names="category", | |
values="y", | |
color="colorby", # Color by the "colorby" column | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Pie Chart with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Funnel plot | |
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST) | |
def figure_generation_funnel(df, to_json=True): | |
fig = px.funnel( | |
df, | |
x="y", | |
color="category", | |
facet_col="facetby", # Facet by the "facetby" column | |
title="Funnel Plot with Color and Facet", | |
) | |
if to_json: | |
if orjson: | |
fig.to_json(engine="orjson") | |
else: | |
fig.to_json(engine="json") | |
# Function to test all charts and gather the times for Polars, Pandas, and PyArrow | |
def test_all_charts(): | |
# List all functions to test | |
# Comment out to skip | |
# Note: This list does not include ALL Plotly Express chart types for various reasons | |
# The full list can be found here: https://plotly.com/python-api-reference/plotly.express.html | |
names_funcs = [ | |
("scatter", figure_generation_scatter), | |
("scatter_3d", figure_generation_scatter_3d), | |
("scatter_polar", figure_generation_scatter_polar), | |
("scatter_ternary", figure_generation_scatter_ternary), | |
("line", figure_generation_line), | |
("line_3d", figure_generation_line_3d), | |
("area", figure_generation_area), | |
("bar", figure_generation_bar), | |
("bar_polar", figure_generation_bar_polar), | |
("violin", figure_generation_violin), | |
("box", figure_generation_box), | |
("ecdf", figure_generation_ecdf), | |
("strip", figure_generation_strip), | |
("histogram", figure_generation_histogram), | |
("pie", figure_generation_pie), | |
# ("funnel", figure_generation_funnel), | |
# There is a BUG with the above funnel plot code which shows up | |
# ONLY on the Narwhals branch -- need to investigate further | |
# Skipping for now | |
] | |
results = [] | |
# Polars performance | |
print("Testing Polars...") | |
for name, func in names_funcs: | |
results.extend((name, "Polars", n) for n in func(polars_df, to_json=TO_JSON)) | |
# Pandas performance | |
print("Testing Pandas...") | |
for name, func in names_funcs: | |
results.extend((name, "Pandas", n) for n in func(pandas_df, to_json=TO_JSON)) | |
# PyArrow performance | |
print("Testing PyArrow...") | |
for name, func in names_funcs: | |
results.extend((name, "PyArrow", n) for n in func(pyarrow_table, to_json=TO_JSON)) | |
return results | |
# Run the performance tests and append results to an existing CSV | |
def run_and_save_results(csv_filename, environment): | |
env_results = test_all_charts() | |
# Create DataFrame with separate columns for Chart Type and Dataframe Type | |
df = pl.DataFrame( | |
{ | |
"Chart type": [result[0] for result in env_results], | |
"Dataframe type": [result[1] for result in env_results], | |
"Time (s)": [result[2] for result in env_results], | |
"Environment": [environment] * len(env_results), | |
} | |
) | |
# Check if file exists, if not, write CSV, otherwise append | |
if not os.path.exists(csv_filename): | |
df.write_csv(csv_filename) | |
print(f"Results saved to {csv_filename}") | |
else: | |
# Read existing CSV and concatenate new data | |
existing_df = pl.read_csv(csv_filename) | |
combined_df = pl.concat([existing_df, df], how="vertical") | |
combined_df.write_csv(csv_filename) | |
print(f"Results appended to {csv_filename}") | |
# Entry point for running the tests | |
if __name__ == "__main__": | |
if len(sys.argv) != 3: | |
print("Usage: python performance_test.py <csv_filename> <environment-name>") | |
else: | |
csv_filename = sys.argv[1] | |
environment = sys.argv[2] | |
run_and_save_results(csv_filename, environment) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Chart type | Dataframe type | Time (s) | Environment | |
---|---|---|---|---|
scatter | Polars | 1.270895004272461 | venv/final-5.24.1 | |
scatter | Polars | 1.3048079013824463 | venv/final-5.24.1 | |
scatter | Polars | 1.2645249366760254 | venv/final-5.24.1 | |
scatter | Polars | 1.2689037322998047 | venv/final-5.24.1 | |
scatter | Polars | 1.2599449157714844 | venv/final-5.24.1 | |
scatter | Polars | 1.273914098739624 | venv/final-5.24.1 | |
scatter | Polars | 1.3083109855651855 | venv/final-5.24.1 | |
scatter | Polars | 1.2658936977386475 | venv/final-5.24.1 | |
scatter | Polars | 1.2735700607299805 | venv/final-5.24.1 | |
scatter | Polars | 1.264195203781128 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7237622737884521 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7192962169647217 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7169179916381836 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7373790740966797 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7275688648223877 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.719825029373169 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7293469905853271 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7214648723602295 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7295401096343994 | venv/final-5.24.1 | |
scatter_3d | Polars | 0.7196660041809082 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.664478063583374 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6651079654693604 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6623268127441406 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6650071144104004 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.668287992477417 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6618950366973877 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.7313292026519775 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6703250408172607 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6665740013122559 | venv/final-5.24.1 | |
scatter_polar | Polars | 0.6652116775512695 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7241506576538086 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7407248020172119 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7386391162872314 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7352006435394287 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7235939502716064 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.722736120223999 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7236981391906738 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7249460220336914 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.7265129089355469 | venv/final-5.24.1 | |
scatter_ternary | Polars | 0.721052885055542 | venv/final-5.24.1 | |
line | Polars | 1.2644999027252197 | venv/final-5.24.1 | |
line | Polars | 1.2970457077026367 | venv/final-5.24.1 | |
line | Polars | 1.2570641040802002 | venv/final-5.24.1 | |
line | Polars | 1.275019884109497 | venv/final-5.24.1 | |
line | Polars | 1.2801568508148193 | venv/final-5.24.1 | |
line | Polars | 1.2511749267578125 | venv/final-5.24.1 | |
line | Polars | 1.2791779041290283 | venv/final-5.24.1 | |
line | Polars | 1.2532169818878174 | venv/final-5.24.1 | |
line | Polars | 1.263016939163208 | venv/final-5.24.1 | |
line | Polars | 1.2497589588165283 | venv/final-5.24.1 | |
line_3d | Polars | 0.7293570041656494 | venv/final-5.24.1 | |
line_3d | Polars | 0.7641239166259766 | venv/final-5.24.1 | |
line_3d | Polars | 0.7212100028991699 | venv/final-5.24.1 | |
line_3d | Polars | 0.7281222343444824 | venv/final-5.24.1 | |
line_3d | Polars | 0.7298569679260254 | venv/final-5.24.1 | |
line_3d | Polars | 0.726525068283081 | venv/final-5.24.1 | |
line_3d | Polars | 0.7248749732971191 | venv/final-5.24.1 | |
line_3d | Polars | 0.7358052730560303 | venv/final-5.24.1 | |
line_3d | Polars | 0.7328081130981445 | venv/final-5.24.1 | |
line_3d | Polars | 0.7321598529815674 | venv/final-5.24.1 | |
area | Polars | 1.2814571857452393 | venv/final-5.24.1 | |
area | Polars | 1.2718372344970703 | venv/final-5.24.1 | |
area | Polars | 1.2765886783599854 | venv/final-5.24.1 | |
area | Polars | 1.2626979351043701 | venv/final-5.24.1 | |
area | Polars | 1.2706139087677002 | venv/final-5.24.1 | |
area | Polars | 1.2674598693847656 | venv/final-5.24.1 | |
area | Polars | 1.258894920349121 | venv/final-5.24.1 | |
area | Polars | 1.2705662250518799 | venv/final-5.24.1 | |
area | Polars | 1.2703278064727783 | venv/final-5.24.1 | |
area | Polars | 1.2688782215118408 | venv/final-5.24.1 | |
bar | Polars | 2.2766051292419434 | venv/final-5.24.1 | |
bar | Polars | 2.2716617584228516 | venv/final-5.24.1 | |
bar | Polars | 2.2641830444335938 | venv/final-5.24.1 | |
bar | Polars | 2.26633882522583 | venv/final-5.24.1 | |
bar | Polars | 2.275895118713379 | venv/final-5.24.1 | |
bar | Polars | 2.257974863052368 | venv/final-5.24.1 | |
bar | Polars | 2.2752580642700195 | venv/final-5.24.1 | |
bar | Polars | 2.2627949714660645 | venv/final-5.24.1 | |
bar | Polars | 2.265787124633789 | venv/final-5.24.1 | |
bar | Polars | 2.2796409130096436 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6760578155517578 | venv/final-5.24.1 | |
bar_polar | Polars | 1.669205904006958 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6787259578704834 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6673591136932373 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6759700775146484 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6721901893615723 | venv/final-5.24.1 | |
bar_polar | Polars | 1.685394048690796 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6902079582214355 | venv/final-5.24.1 | |
bar_polar | Polars | 1.684758186340332 | venv/final-5.24.1 | |
bar_polar | Polars | 1.6755342483520508 | venv/final-5.24.1 | |
violin | Polars | 2.3459858894348145 | venv/final-5.24.1 | |
violin | Polars | 2.2959213256835938 | venv/final-5.24.1 | |
violin | Polars | 2.2910690307617188 | venv/final-5.24.1 | |
violin | Polars | 2.2904860973358154 | venv/final-5.24.1 | |
violin | Polars | 2.280269145965576 | venv/final-5.24.1 | |
violin | Polars | 2.275552988052368 | venv/final-5.24.1 | |
violin | Polars | 2.2935118675231934 | venv/final-5.24.1 | |
violin | Polars | 2.2773277759552 | venv/final-5.24.1 | |
violin | Polars | 2.284619092941284 | venv/final-5.24.1 | |
violin | Polars | 2.2880539894104004 | venv/final-5.24.1 | |
box | Polars | 2.289078950881958 | venv/final-5.24.1 | |
box | Polars | 2.2858848571777344 | venv/final-5.24.1 | |
box | Polars | 2.300610065460205 | venv/final-5.24.1 | |
box | Polars | 2.3001327514648438 | venv/final-5.24.1 | |
box | Polars | 2.2840378284454346 | venv/final-5.24.1 | |
box | Polars | 2.2783820629119873 | venv/final-5.24.1 | |
box | Polars | 2.2838027477264404 | venv/final-5.24.1 | |
box | Polars | 2.284080982208252 | venv/final-5.24.1 | |
box | Polars | 2.2978811264038086 | venv/final-5.24.1 | |
box | Polars | 2.2838680744171143 | venv/final-5.24.1 | |
ecdf | Polars | 1.4241130352020264 | venv/final-5.24.1 | |
ecdf | Polars | 1.4143061637878418 | venv/final-5.24.1 | |
ecdf | Polars | 1.429905891418457 | venv/final-5.24.1 | |
ecdf | Polars | 1.4354839324951172 | venv/final-5.24.1 | |
ecdf | Polars | 1.4168460369110107 | venv/final-5.24.1 | |
ecdf | Polars | 1.4100627899169922 | venv/final-5.24.1 | |
ecdf | Polars | 1.4107568264007568 | venv/final-5.24.1 | |
ecdf | Polars | 1.4124641418457031 | venv/final-5.24.1 | |
ecdf | Polars | 1.414017677307129 | venv/final-5.24.1 | |
ecdf | Polars | 1.4126882553100586 | venv/final-5.24.1 | |
strip | Polars | 2.2963340282440186 | venv/final-5.24.1 | |
strip | Polars | 2.337506055831909 | venv/final-5.24.1 | |
strip | Polars | 2.2912399768829346 | venv/final-5.24.1 | |
strip | Polars | 2.3043620586395264 | venv/final-5.24.1 | |
strip | Polars | 2.279782295227051 | venv/final-5.24.1 | |
strip | Polars | 2.303537130355835 | venv/final-5.24.1 | |
strip | Polars | 2.299302816390991 | venv/final-5.24.1 | |
strip | Polars | 2.285233736038208 | venv/final-5.24.1 | |
strip | Polars | 2.3091118335723877 | venv/final-5.24.1 | |
strip | Polars | 2.358424186706543 | venv/final-5.24.1 | |
histogram | Polars | 1.2437429428100586 | venv/final-5.24.1 | |
histogram | Polars | 1.2380809783935547 | venv/final-5.24.1 | |
histogram | Polars | 1.2346248626708984 | venv/final-5.24.1 | |
histogram | Polars | 1.2274727821350098 | venv/final-5.24.1 | |
histogram | Polars | 1.2466888427734375 | venv/final-5.24.1 | |
histogram | Polars | 1.2404518127441406 | venv/final-5.24.1 | |
histogram | Polars | 1.2403340339660645 | venv/final-5.24.1 | |
histogram | Polars | 1.2332241535186768 | venv/final-5.24.1 | |
histogram | Polars | 1.2344348430633545 | venv/final-5.24.1 | |
histogram | Polars | 1.2323110103607178 | venv/final-5.24.1 | |
pie | Polars | 5.435199975967407 | venv/final-5.24.1 | |
pie | Polars | 5.453827142715454 | venv/final-5.24.1 | |
pie | Polars | 5.44839882850647 | venv/final-5.24.1 | |
pie | Polars | 5.446609973907471 | venv/final-5.24.1 | |
pie | Polars | 5.431366920471191 | venv/final-5.24.1 | |
pie | Polars | 5.449784994125366 | venv/final-5.24.1 | |
pie | Polars | 5.463292121887207 | venv/final-5.24.1 | |
pie | Polars | 5.447933197021484 | venv/final-5.24.1 | |
pie | Polars | 5.452636003494263 | venv/final-5.24.1 | |
pie | Polars | 5.4598987102508545 | venv/final-5.24.1 | |
funnel | Polars | 1.1904377937316895 | venv/final-5.24.1 | |
funnel | Polars | 1.2131397724151611 | venv/final-5.24.1 | |
funnel | Polars | 1.1873540878295898 | venv/final-5.24.1 | |
funnel | Polars | 1.1899569034576416 | venv/final-5.24.1 | |
funnel | Polars | 1.2104508876800537 | venv/final-5.24.1 | |
funnel | Polars | 1.214331865310669 | venv/final-5.24.1 | |
funnel | Polars | 1.2239689826965332 | venv/final-5.24.1 | |
funnel | Polars | 1.1984541416168213 | venv/final-5.24.1 | |
funnel | Polars | 1.204409122467041 | venv/final-5.24.1 | |
funnel | Polars | 1.1915688514709473 | venv/final-5.24.1 | |
scatter | Pandas | 0.2814939022064209 | venv/final-5.24.1 | |
scatter | Pandas | 0.27912187576293945 | venv/final-5.24.1 | |
scatter | Pandas | 0.28457188606262207 | venv/final-5.24.1 | |
scatter | Pandas | 0.2818629741668701 | venv/final-5.24.1 | |
scatter | Pandas | 0.28495311737060547 | venv/final-5.24.1 | |
scatter | Pandas | 0.28139305114746094 | venv/final-5.24.1 | |
scatter | Pandas | 0.2863290309906006 | venv/final-5.24.1 | |
scatter | Pandas | 0.2782590389251709 | venv/final-5.24.1 | |
scatter | Pandas | 0.2777893543243408 | venv/final-5.24.1 | |
scatter | Pandas | 0.2800450325012207 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24317693710327148 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24440598487854004 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24394917488098145 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24428486824035645 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.2399890422821045 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.2429959774017334 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.2420201301574707 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24323415756225586 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24318313598632812 | venv/final-5.24.1 | |
scatter_3d | Pandas | 0.24335002899169922 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.19194984436035156 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18963384628295898 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.19362306594848633 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.19025421142578125 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.191756010055542 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18948674201965332 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18993616104125977 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18685412406921387 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18977999687194824 | venv/final-5.24.1 | |
scatter_polar | Pandas | 0.18788599967956543 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.24738812446594238 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.25342273712158203 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2503490447998047 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2500946521759033 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.250565767288208 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.25040507316589355 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2522127628326416 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2507801055908203 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2501387596130371 | venv/final-5.24.1 | |
scatter_ternary | Pandas | 0.2515377998352051 | venv/final-5.24.1 | |
line | Pandas | 0.2764902114868164 | venv/final-5.24.1 | |
line | Pandas | 0.2731750011444092 | venv/final-5.24.1 | |
line | Pandas | 0.2718069553375244 | venv/final-5.24.1 | |
line | Pandas | 0.27368998527526855 | venv/final-5.24.1 | |
line | Pandas | 0.28086400032043457 | venv/final-5.24.1 | |
line | Pandas | 0.2804999351501465 | venv/final-5.24.1 | |
line | Pandas | 0.2722461223602295 | venv/final-5.24.1 | |
line | Pandas | 0.2696211338043213 | venv/final-5.24.1 | |
line | Pandas | 0.2748758792877197 | venv/final-5.24.1 | |
line | Pandas | 0.2778198719024658 | venv/final-5.24.1 | |
line_3d | Pandas | 0.2465527057647705 | venv/final-5.24.1 | |
line_3d | Pandas | 0.2602369785308838 | venv/final-5.24.1 | |
line_3d | Pandas | 0.24697089195251465 | venv/final-5.24.1 | |
line_3d | Pandas | 0.24910807609558105 | venv/final-5.24.1 | |
line_3d | Pandas | 0.24417901039123535 | venv/final-5.24.1 | |
line_3d | Pandas | 0.25939416885375977 | venv/final-5.24.1 | |
line_3d | Pandas | 0.24940872192382812 | venv/final-5.24.1 | |
line_3d | Pandas | 0.2530941963195801 | venv/final-5.24.1 | |
line_3d | Pandas | 0.24469685554504395 | venv/final-5.24.1 | |
line_3d | Pandas | 0.2700512409210205 | venv/final-5.24.1 | |
area | Pandas | 0.2822530269622803 | venv/final-5.24.1 | |
area | Pandas | 0.2849760055541992 | venv/final-5.24.1 | |
area | Pandas | 0.27802085876464844 | venv/final-5.24.1 | |
area | Pandas | 0.274874210357666 | venv/final-5.24.1 | |
area | Pandas | 0.27820277214050293 | venv/final-5.24.1 | |
area | Pandas | 0.280750036239624 | venv/final-5.24.1 | |
area | Pandas | 0.26905107498168945 | venv/final-5.24.1 | |
area | Pandas | 0.2760179042816162 | venv/final-5.24.1 | |
area | Pandas | 0.2720038890838623 | venv/final-5.24.1 | |
area | Pandas | 0.276583194732666 | venv/final-5.24.1 | |
bar | Pandas | 0.8206179141998291 | venv/final-5.24.1 | |
bar | Pandas | 0.8092818260192871 | venv/final-5.24.1 | |
bar | Pandas | 0.8137099742889404 | venv/final-5.24.1 | |
bar | Pandas | 0.813335657119751 | venv/final-5.24.1 | |
bar | Pandas | 0.8217580318450928 | venv/final-5.24.1 | |
bar | Pandas | 0.8138527870178223 | venv/final-5.24.1 | |
bar | Pandas | 0.8105618953704834 | venv/final-5.24.1 | |
bar | Pandas | 0.8108329772949219 | venv/final-5.24.1 | |
bar | Pandas | 0.8137862682342529 | venv/final-5.24.1 | |
bar | Pandas | 0.815270185470581 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7273027896881104 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7227728366851807 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7181401252746582 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7208733558654785 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7789733409881592 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7368221282958984 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7198038101196289 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7205359935760498 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.719376802444458 | venv/final-5.24.1 | |
bar_polar | Pandas | 0.7229969501495361 | venv/final-5.24.1 | |
violin | Pandas | 0.8075461387634277 | venv/final-5.24.1 | |
violin | Pandas | 0.8133418560028076 | venv/final-5.24.1 | |
violin | Pandas | 0.8076536655426025 | venv/final-5.24.1 | |
violin | Pandas | 0.8113090991973877 | venv/final-5.24.1 | |
violin | Pandas | 0.8104619979858398 | venv/final-5.24.1 | |
violin | Pandas | 0.8096001148223877 | venv/final-5.24.1 | |
violin | Pandas | 0.8070211410522461 | venv/final-5.24.1 | |
violin | Pandas | 0.8089327812194824 | venv/final-5.24.1 | |
violin | Pandas | 0.8041839599609375 | venv/final-5.24.1 | |
violin | Pandas | 0.8116888999938965 | venv/final-5.24.1 | |
box | Pandas | 0.8039810657501221 | venv/final-5.24.1 | |
box | Pandas | 0.8115270137786865 | venv/final-5.24.1 | |
box | Pandas | 0.7971818447113037 | venv/final-5.24.1 | |
box | Pandas | 0.7961277961730957 | venv/final-5.24.1 | |
box | Pandas | 0.8014609813690186 | venv/final-5.24.1 | |
box | Pandas | 0.8040058612823486 | venv/final-5.24.1 | |
box | Pandas | 0.7968199253082275 | venv/final-5.24.1 | |
box | Pandas | 0.8108241558074951 | venv/final-5.24.1 | |
box | Pandas | 0.8049070835113525 | venv/final-5.24.1 | |
box | Pandas | 0.8031430244445801 | venv/final-5.24.1 | |
ecdf | Pandas | 0.418698787689209 | venv/final-5.24.1 | |
ecdf | Pandas | 0.4133729934692383 | venv/final-5.24.1 | |
ecdf | Pandas | 0.40982913970947266 | venv/final-5.24.1 | |
ecdf | Pandas | 0.40995097160339355 | venv/final-5.24.1 | |
ecdf | Pandas | 0.41041994094848633 | venv/final-5.24.1 | |
ecdf | Pandas | 0.4274113178253174 | venv/final-5.24.1 | |
ecdf | Pandas | 0.40658116340637207 | venv/final-5.24.1 | |
ecdf | Pandas | 0.41626691818237305 | venv/final-5.24.1 | |
ecdf | Pandas | 0.39998507499694824 | venv/final-5.24.1 | |
ecdf | Pandas | 0.4030649662017822 | venv/final-5.24.1 | |
strip | Pandas | 0.8165702819824219 | venv/final-5.24.1 | |
strip | Pandas | 0.8111288547515869 | venv/final-5.24.1 | |
strip | Pandas | 0.8104560375213623 | venv/final-5.24.1 | |
strip | Pandas | 0.8141069412231445 | venv/final-5.24.1 | |
strip | Pandas | 0.8184387683868408 | venv/final-5.24.1 | |
strip | Pandas | 0.80442214012146 | venv/final-5.24.1 | |
strip | Pandas | 0.8104009628295898 | venv/final-5.24.1 | |
strip | Pandas | 0.8101260662078857 | venv/final-5.24.1 | |
strip | Pandas | 0.8060579299926758 | venv/final-5.24.1 | |
strip | Pandas | 0.8095343112945557 | venv/final-5.24.1 | |
histogram | Pandas | 0.22515201568603516 | venv/final-5.24.1 | |
histogram | Pandas | 0.22100114822387695 | venv/final-5.24.1 | |
histogram | Pandas | 0.21982789039611816 | venv/final-5.24.1 | |
histogram | Pandas | 0.2194681167602539 | venv/final-5.24.1 | |
histogram | Pandas | 0.22443127632141113 | venv/final-5.24.1 | |
histogram | Pandas | 0.21934008598327637 | venv/final-5.24.1 | |
histogram | Pandas | 0.22315120697021484 | venv/final-5.24.1 | |
histogram | Pandas | 0.22440099716186523 | venv/final-5.24.1 | |
histogram | Pandas | 0.2210690975189209 | venv/final-5.24.1 | |
histogram | Pandas | 0.22040295600891113 | venv/final-5.24.1 | |
pie | Pandas | 3.9612960815429688 | venv/final-5.24.1 | |
pie | Pandas | 3.9501588344573975 | venv/final-5.24.1 | |
pie | Pandas | 3.9569058418273926 | venv/final-5.24.1 | |
pie | Pandas | 3.986732006072998 | venv/final-5.24.1 | |
pie | Pandas | 3.9598028659820557 | venv/final-5.24.1 | |
pie | Pandas | 3.965277910232544 | venv/final-5.24.1 | |
pie | Pandas | 3.95550799369812 | venv/final-5.24.1 | |
pie | Pandas | 3.9958019256591797 | venv/final-5.24.1 | |
pie | Pandas | 3.9708569049835205 | venv/final-5.24.1 | |
pie | Pandas | 3.949176073074341 | venv/final-5.24.1 | |
funnel | Pandas | 0.23158788681030273 | venv/final-5.24.1 | |
funnel | Pandas | 0.23217105865478516 | venv/final-5.24.1 | |
funnel | Pandas | 0.2293100357055664 | venv/final-5.24.1 | |
funnel | Pandas | 0.2246239185333252 | venv/final-5.24.1 | |
funnel | Pandas | 0.22957992553710938 | venv/final-5.24.1 | |
funnel | Pandas | 0.22509312629699707 | venv/final-5.24.1 | |
funnel | Pandas | 0.22818589210510254 | venv/final-5.24.1 | |
funnel | Pandas | 0.22761201858520508 | venv/final-5.24.1 | |
funnel | Pandas | 0.2286238670349121 | venv/final-5.24.1 | |
funnel | Pandas | 0.2270369529724121 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2812669277191162 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2783210277557373 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2786571979522705 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2703509330749512 | venv/final-5.24.1 | |
scatter | PyArrow | 1.273064136505127 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2984471321105957 | venv/final-5.24.1 | |
scatter | PyArrow | 1.3026208877563477 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2976429462432861 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2978289127349854 | venv/final-5.24.1 | |
scatter | PyArrow | 1.2935290336608887 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7383589744567871 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.729964017868042 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7373077869415283 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7340333461761475 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7410778999328613 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7390940189361572 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7378759384155273 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7390532493591309 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7392189502716064 | venv/final-5.24.1 | |
scatter_3d | PyArrow | 0.7393288612365723 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6956851482391357 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6794769763946533 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6785221099853516 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6834349632263184 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.7033729553222656 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.681769847869873 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.69057297706604 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6952779293060303 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6916041374206543 | venv/final-5.24.1 | |
scatter_polar | PyArrow | 0.6961007118225098 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7289798259735107 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7423858642578125 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7440581321716309 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7532618045806885 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7528843879699707 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7586150169372559 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7648129463195801 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7573728561401367 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7594242095947266 | venv/final-5.24.1 | |
scatter_ternary | PyArrow | 0.7347168922424316 | venv/final-5.24.1 | |
line | PyArrow | 1.279416799545288 | venv/final-5.24.1 | |
line | PyArrow | 1.3299567699432373 | venv/final-5.24.1 | |
line | PyArrow | 1.2832591533660889 | venv/final-5.24.1 | |
line | PyArrow | 1.288604974746704 | venv/final-5.24.1 | |
line | PyArrow | 1.2697029113769531 | venv/final-5.24.1 | |
line | PyArrow | 1.269171953201294 | venv/final-5.24.1 | |
line | PyArrow | 1.2665858268737793 | venv/final-5.24.1 | |
line | PyArrow | 1.2886567115783691 | venv/final-5.24.1 | |
line | PyArrow | 1.2900211811065674 | venv/final-5.24.1 | |
line | PyArrow | 1.2935421466827393 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7478272914886475 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7512469291687012 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7508049011230469 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7494611740112305 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7515649795532227 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7488727569580078 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7523398399353027 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7522051334381104 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.754647970199585 | venv/final-5.24.1 | |
line_3d | PyArrow | 0.7540543079376221 | venv/final-5.24.1 | |
area | PyArrow | 1.2764360904693604 | venv/final-5.24.1 | |
area | PyArrow | 1.266195297241211 | venv/final-5.24.1 | |
area | PyArrow | 1.2651071548461914 | venv/final-5.24.1 | |
area | PyArrow | 1.2908260822296143 | venv/final-5.24.1 | |
area | PyArrow | 1.288701057434082 | venv/final-5.24.1 | |
area | PyArrow | 1.3058061599731445 | venv/final-5.24.1 | |
area | PyArrow | 1.2932581901550293 | venv/final-5.24.1 | |
area | PyArrow | 1.2933299541473389 | venv/final-5.24.1 | |
area | PyArrow | 1.3036727905273438 | venv/final-5.24.1 | |
area | PyArrow | 1.3065788745880127 | venv/final-5.24.1 | |
bar | PyArrow | 2.3357999324798584 | venv/final-5.24.1 | |
bar | PyArrow | 2.308412790298462 | venv/final-5.24.1 | |
bar | PyArrow | 2.317486047744751 | venv/final-5.24.1 | |
bar | PyArrow | 2.322280168533325 | venv/final-5.24.1 | |
bar | PyArrow | 2.309717893600464 | venv/final-5.24.1 | |
bar | PyArrow | 2.314548969268799 | venv/final-5.24.1 | |
bar | PyArrow | 2.3173060417175293 | venv/final-5.24.1 | |
bar | PyArrow | 2.3253180980682373 | venv/final-5.24.1 | |
bar | PyArrow | 2.3078482151031494 | venv/final-5.24.1 | |
bar | PyArrow | 2.325735330581665 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6932988166809082 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.695373773574829 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6993300914764404 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6813008785247803 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6951217651367188 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6841130256652832 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6847639083862305 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.6881508827209473 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.668342113494873 | venv/final-5.24.1 | |
bar_polar | PyArrow | 1.7349822521209717 | venv/final-5.24.1 | |
violin | PyArrow | 2.369965076446533 | venv/final-5.24.1 | |
violin | PyArrow | 2.308284282684326 | venv/final-5.24.1 | |
violin | PyArrow | 2.338643789291382 | venv/final-5.24.1 | |
violin | PyArrow | 2.3315062522888184 | venv/final-5.24.1 | |
violin | PyArrow | 2.2985949516296387 | venv/final-5.24.1 | |
violin | PyArrow | 2.302136182785034 | venv/final-5.24.1 | |
violin | PyArrow | 2.300887107849121 | venv/final-5.24.1 | |
violin | PyArrow | 2.314206838607788 | venv/final-5.24.1 | |
violin | PyArrow | 2.2997732162475586 | venv/final-5.24.1 | |
violin | PyArrow | 2.3211281299591064 | venv/final-5.24.1 | |
box | PyArrow | 2.2950069904327393 | venv/final-5.24.1 | |
box | PyArrow | 2.3030667304992676 | venv/final-5.24.1 | |
box | PyArrow | 2.338286876678467 | venv/final-5.24.1 | |
box | PyArrow | 2.333030939102173 | venv/final-5.24.1 | |
box | PyArrow | 2.3173868656158447 | venv/final-5.24.1 | |
box | PyArrow | 2.3146848678588867 | venv/final-5.24.1 | |
box | PyArrow | 2.289876937866211 | venv/final-5.24.1 | |
box | PyArrow | 2.2966978549957275 | venv/final-5.24.1 | |
box | PyArrow | 2.2941150665283203 | venv/final-5.24.1 | |
box | PyArrow | 2.3085291385650635 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.422987937927246 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.428412914276123 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4151639938354492 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4213659763336182 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.423130750656128 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4507310390472412 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4234681129455566 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.416182041168213 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4152770042419434 | venv/final-5.24.1 | |
ecdf | PyArrow | 1.4189419746398926 | venv/final-5.24.1 | |
strip | PyArrow | 2.312540054321289 | venv/final-5.24.1 | |
strip | PyArrow | 2.339064121246338 | venv/final-5.24.1 | |
strip | PyArrow | 2.2951109409332275 | venv/final-5.24.1 | |
strip | PyArrow | 2.328727960586548 | venv/final-5.24.1 | |
strip | PyArrow | 2.31152081489563 | venv/final-5.24.1 | |
strip | PyArrow | 2.3461761474609375 | venv/final-5.24.1 | |
strip | PyArrow | 2.3144707679748535 | venv/final-5.24.1 | |
strip | PyArrow | 2.3146190643310547 | venv/final-5.24.1 | |
strip | PyArrow | 2.3186659812927246 | venv/final-5.24.1 | |
strip | PyArrow | 2.326824188232422 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2451660633087158 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2599501609802246 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2772161960601807 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2557189464569092 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2437388896942139 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2364840507507324 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2529098987579346 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2633190155029297 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2264728546142578 | venv/final-5.24.1 | |
histogram | PyArrow | 1.2495949268341064 | venv/final-5.24.1 | |
pie | PyArrow | 5.5205230712890625 | venv/final-5.24.1 | |
pie | PyArrow | 5.524170875549316 | venv/final-5.24.1 | |
pie | PyArrow | 5.500594139099121 | venv/final-5.24.1 | |
pie | PyArrow | 5.515862941741943 | venv/final-5.24.1 | |
pie | PyArrow | 5.518378973007202 | venv/final-5.24.1 | |
pie | PyArrow | 5.518615007400513 | venv/final-5.24.1 | |
pie | PyArrow | 5.50267219543457 | venv/final-5.24.1 | |
pie | PyArrow | 5.535560131072998 | venv/final-5.24.1 | |
pie | PyArrow | 5.512987852096558 | venv/final-5.24.1 | |
pie | PyArrow | 5.520418643951416 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2082409858703613 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2055878639221191 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2041139602661133 | venv/final-5.24.1 | |
funnel | PyArrow | 1.1943309307098389 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2064540386199951 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2141749858856201 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2057721614837646 | venv/final-5.24.1 | |
funnel | PyArrow | 1.1922359466552734 | venv/final-5.24.1 | |
funnel | PyArrow | 1.1919100284576416 | venv/final-5.24.1 | |
funnel | PyArrow | 1.2005112171173096 | venv/final-5.24.1 | |
scatter | Polars | 0.12102699279785156 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.11979103088378906 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.12257909774780273 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.1224970817565918 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.1201632022857666 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.14026093482971191 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.12021088600158691 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.1176900863647461 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.11942720413208008 | venv/final-6.0.0rc0 | |
scatter | Polars | 0.11725902557373047 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.14950990676879883 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.15137100219726562 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.14812874794006348 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.15421009063720703 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.1526191234588623 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.1425328254699707 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.1430950164794922 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.14081096649169922 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.14074015617370605 | venv/final-6.0.0rc0 | |
scatter_3d | Polars | 0.1445789337158203 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10234689712524414 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10162520408630371 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10372805595397949 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10167789459228516 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10095906257629395 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.0997922420501709 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.09998226165771484 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10147881507873535 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10109496116638184 | venv/final-6.0.0rc0 | |
scatter_polar | Polars | 0.10040926933288574 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.1463172435760498 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14179420471191406 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14579391479492188 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14303803443908691 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14690208435058594 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14207983016967773 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14480185508728027 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14642596244812012 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.14752411842346191 | venv/final-6.0.0rc0 | |
scatter_ternary | Polars | 0.1427290439605713 | venv/final-6.0.0rc0 | |
line | Polars | 0.1194000244140625 | venv/final-6.0.0rc0 | |
line | Polars | 0.11695384979248047 | venv/final-6.0.0rc0 | |
line | Polars | 0.11897611618041992 | venv/final-6.0.0rc0 | |
line | Polars | 0.12178802490234375 | venv/final-6.0.0rc0 | |
line | Polars | 0.12116408348083496 | venv/final-6.0.0rc0 | |
line | Polars | 0.11929106712341309 | venv/final-6.0.0rc0 | |
line | Polars | 0.11934995651245117 | venv/final-6.0.0rc0 | |
line | Polars | 0.12136697769165039 | venv/final-6.0.0rc0 | |
line | Polars | 0.12070989608764648 | venv/final-6.0.0rc0 | |
line | Polars | 0.11732697486877441 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14131402969360352 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14463114738464355 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14469504356384277 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14122700691223145 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14217305183410645 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.1418776512145996 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14190983772277832 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.13941001892089844 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14097213745117188 | venv/final-6.0.0rc0 | |
line_3d | Polars | 0.14393925666809082 | venv/final-6.0.0rc0 | |
area | Polars | 0.11682677268981934 | venv/final-6.0.0rc0 | |
area | Polars | 0.12448978424072266 | venv/final-6.0.0rc0 | |
area | Polars | 0.11726593971252441 | venv/final-6.0.0rc0 | |
area | Polars | 0.12136101722717285 | venv/final-6.0.0rc0 | |
area | Polars | 0.1163167953491211 | venv/final-6.0.0rc0 | |
area | Polars | 0.12077021598815918 | venv/final-6.0.0rc0 | |
area | Polars | 0.11705303192138672 | venv/final-6.0.0rc0 | |
area | Polars | 0.11934685707092285 | venv/final-6.0.0rc0 | |
area | Polars | 0.11463403701782227 | venv/final-6.0.0rc0 | |
area | Polars | 0.12321996688842773 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6642990112304688 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6643402576446533 | venv/final-6.0.0rc0 | |
bar | Polars | 0.7166652679443359 | venv/final-6.0.0rc0 | |
bar | Polars | 0.653904914855957 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6599249839782715 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6488893032073975 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6537683010101318 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6484532356262207 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6587958335876465 | venv/final-6.0.0rc0 | |
bar | Polars | 0.6517229080200195 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6353662014007568 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6333541870117188 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6335010528564453 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6306238174438477 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6338889598846436 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6332669258117676 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6383559703826904 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6410677433013916 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6426100730895996 | venv/final-6.0.0rc0 | |
bar_polar | Polars | 0.6310040950775146 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6462149620056152 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6443679332733154 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6509859561920166 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6588599681854248 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6485788822174072 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6552090644836426 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6500201225280762 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6480257511138916 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6469500064849854 | venv/final-6.0.0rc0 | |
violin | Polars | 0.6483860015869141 | venv/final-6.0.0rc0 | |
box | Polars | 0.6526751518249512 | venv/final-6.0.0rc0 | |
box | Polars | 0.6465790271759033 | venv/final-6.0.0rc0 | |
box | Polars | 0.64373779296875 | venv/final-6.0.0rc0 | |
box | Polars | 0.6494259834289551 | venv/final-6.0.0rc0 | |
box | Polars | 0.6520740985870361 | venv/final-6.0.0rc0 | |
box | Polars | 0.6487312316894531 | venv/final-6.0.0rc0 | |
box | Polars | 0.6407182216644287 | venv/final-6.0.0rc0 | |
box | Polars | 0.64404296875 | venv/final-6.0.0rc0 | |
box | Polars | 0.6461308002471924 | venv/final-6.0.0rc0 | |
box | Polars | 0.6479039192199707 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15049481391906738 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15007781982421875 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15042376518249512 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15343618392944336 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.14723920822143555 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15252041816711426 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.15136933326721191 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.1467740535736084 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.14713597297668457 | venv/final-6.0.0rc0 | |
ecdf | Polars | 0.14905190467834473 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6471588611602783 | venv/final-6.0.0rc0 | |
strip | Polars | 0.722606897354126 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6612436771392822 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6654131412506104 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6563150882720947 | venv/final-6.0.0rc0 | |
strip | Polars | 0.651951789855957 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6508290767669678 | venv/final-6.0.0rc0 | |
strip | Polars | 0.65476393699646 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6565358638763428 | venv/final-6.0.0rc0 | |
strip | Polars | 0.6522510051727295 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08602285385131836 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08643794059753418 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08656501770019531 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08889412879943848 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.0828092098236084 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08644700050354004 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08542418479919434 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08417034149169922 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08816933631896973 | venv/final-6.0.0rc0 | |
histogram | Polars | 0.08733320236206055 | venv/final-6.0.0rc0 | |
pie | Polars | 3.9770541191101074 | venv/final-6.0.0rc0 | |
pie | Polars | 3.949625015258789 | venv/final-6.0.0rc0 | |
pie | Polars | 3.922612190246582 | venv/final-6.0.0rc0 | |
pie | Polars | 3.943241834640503 | venv/final-6.0.0rc0 | |
pie | Polars | 3.9393091201782227 | venv/final-6.0.0rc0 | |
pie | Polars | 3.943856954574585 | venv/final-6.0.0rc0 | |
pie | Polars | 3.92482590675354 | venv/final-6.0.0rc0 | |
pie | Polars | 3.9317407608032227 | venv/final-6.0.0rc0 | |
pie | Polars | 3.9484148025512695 | venv/final-6.0.0rc0 | |
pie | Polars | 3.9792370796203613 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10611200332641602 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10410904884338379 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10642504692077637 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10451197624206543 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10704374313354492 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10286116600036621 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10226106643676758 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10187196731567383 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10029006004333496 | venv/final-6.0.0rc0 | |
funnel | Polars | 0.10623502731323242 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.2407209873199463 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23581624031066895 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23986029624938965 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23675107955932617 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23464083671569824 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23616814613342285 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.24105501174926758 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.2385568618774414 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.24643397331237793 | venv/final-6.0.0rc0 | |
scatter | Pandas | 0.23716402053833008 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19298005104064941 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.20007967948913574 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19470000267028809 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19397401809692383 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19752883911132812 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19241023063659668 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19001436233520508 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.1904160976409912 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19415879249572754 | venv/final-6.0.0rc0 | |
scatter_3d | Pandas | 0.19360899925231934 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15246891975402832 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15187692642211914 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15282678604125977 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.1472461223602295 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15173888206481934 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15117597579956055 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.1505887508392334 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.14888596534729004 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.15067076683044434 | venv/final-6.0.0rc0 | |
scatter_polar | Pandas | 0.14905905723571777 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19498395919799805 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19555091857910156 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.1956019401550293 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19478201866149902 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.1885819435119629 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19432282447814941 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19228601455688477 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.1951000690460205 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.198045015335083 | venv/final-6.0.0rc0 | |
scatter_ternary | Pandas | 0.19433093070983887 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23517894744873047 | venv/final-6.0.0rc0 | |
line | Pandas | 0.2331240177154541 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23269009590148926 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23935484886169434 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23648309707641602 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23558688163757324 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23259592056274414 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23468899726867676 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23326373100280762 | venv/final-6.0.0rc0 | |
line | Pandas | 0.23333191871643066 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.1945791244506836 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.19420409202575684 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.19429802894592285 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.19548296928405762 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.19022297859191895 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.18995881080627441 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.19271302223205566 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.18905901908874512 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.1940162181854248 | venv/final-6.0.0rc0 | |
line_3d | Pandas | 0.1913280487060547 | venv/final-6.0.0rc0 | |
area | Pandas | 0.2290811538696289 | venv/final-6.0.0rc0 | |
area | Pandas | 0.24019098281860352 | venv/final-6.0.0rc0 | |
area | Pandas | 0.2327110767364502 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23603200912475586 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23041319847106934 | venv/final-6.0.0rc0 | |
area | Pandas | 0.2294018268585205 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23068499565124512 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23134517669677734 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23235702514648438 | venv/final-6.0.0rc0 | |
area | Pandas | 0.23343181610107422 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8048241138458252 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8150501251220703 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.813621997833252 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8088159561157227 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.798130989074707 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8143806457519531 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.809384822845459 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8086910247802734 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8001463413238525 | venv/final-6.0.0rc0 | |
bar | Pandas | 0.8051352500915527 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7079801559448242 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.710968017578125 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7044670581817627 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7035520076751709 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7011380195617676 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7108721733093262 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7046689987182617 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7038190364837646 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7058401107788086 | venv/final-6.0.0rc0 | |
bar_polar | Pandas | 0.7040829658508301 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8044216632843018 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8077702522277832 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.807319164276123 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8059821128845215 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.808189868927002 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8153319358825684 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8173141479492188 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8044989109039307 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8089029788970947 | venv/final-6.0.0rc0 | |
violin | Pandas | 0.8064498901367188 | venv/final-6.0.0rc0 | |
box | Pandas | 0.8025810718536377 | venv/final-6.0.0rc0 | |
box | Pandas | 0.796727180480957 | venv/final-6.0.0rc0 | |
box | Pandas | 0.8054769039154053 | venv/final-6.0.0rc0 | |
box | Pandas | 0.79693603515625 | venv/final-6.0.0rc0 | |
box | Pandas | 0.7948970794677734 | venv/final-6.0.0rc0 | |
box | Pandas | 0.7989091873168945 | venv/final-6.0.0rc0 | |
box | Pandas | 0.8008308410644531 | venv/final-6.0.0rc0 | |
box | Pandas | 0.7954521179199219 | venv/final-6.0.0rc0 | |
box | Pandas | 0.8017590045928955 | venv/final-6.0.0rc0 | |
box | Pandas | 0.8102970123291016 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.3889148235321045 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.39505887031555176 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.39429187774658203 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.4014122486114502 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.38929009437561035 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.38822460174560547 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.3957240581512451 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.41277599334716797 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.3900790214538574 | venv/final-6.0.0rc0 | |
ecdf | Pandas | 0.39546799659729004 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8120851516723633 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8008389472961426 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8156259059906006 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8042178153991699 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8047499656677246 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.7996323108673096 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8049399852752686 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.803720235824585 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8099713325500488 | venv/final-6.0.0rc0 | |
strip | Pandas | 0.8044722080230713 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19082307815551758 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19544100761413574 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.1914350986480713 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19694995880126953 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.1946251392364502 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19135808944702148 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19377732276916504 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.20217394828796387 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.19216704368591309 | venv/final-6.0.0rc0 | |
histogram | Pandas | 0.1931297779083252 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.041480779647827 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.000250816345215 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.019212245941162 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.001894950866699 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.010812759399414 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.027556896209717 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.016187906265259 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.03218412399292 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.015374660491943 | venv/final-6.0.0rc0 | |
pie | Pandas | 4.027557849884033 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20628929138183594 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20442414283752441 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.2068939208984375 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20798516273498535 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20306873321533203 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20741486549377441 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20446300506591797 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20084881782531738 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.2281818389892578 | venv/final-6.0.0rc0 | |
funnel | Pandas | 0.20157480239868164 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21357488632202148 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21457600593566895 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21590304374694824 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21458196640014648 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.2179419994354248 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.2149050235748291 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21578526496887207 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21463799476623535 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.21288585662841797 | venv/final-6.0.0rc0 | |
scatter | PyArrow | 0.2158827781677246 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.1976490020751953 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.19295406341552734 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.1927039623260498 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.19438934326171875 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.1904902458190918 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.19689702987670898 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.1940748691558838 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.18998098373413086 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.19399380683898926 | venv/final-6.0.0rc0 | |
scatter_3d | PyArrow | 0.19495892524719238 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15680718421936035 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.1545419692993164 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15534305572509766 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.1578691005706787 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15488791465759277 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15346407890319824 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15784597396850586 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15446209907531738 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15372610092163086 | venv/final-6.0.0rc0 | |
scatter_polar | PyArrow | 0.15546011924743652 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19275903701782227 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.1948070526123047 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19208312034606934 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19500374794006348 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19121384620666504 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19473600387573242 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19703078269958496 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19205403327941895 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19269037246704102 | venv/final-6.0.0rc0 | |
scatter_ternary | PyArrow | 0.19182610511779785 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21298885345458984 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21329307556152344 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21448087692260742 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.20948076248168945 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.2113330364227295 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.2111809253692627 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21433091163635254 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21388912200927734 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21269607543945312 | venv/final-6.0.0rc0 | |
line | PyArrow | 0.21248984336853027 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19269299507141113 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19399714469909668 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19440293312072754 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19010376930236816 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19490289688110352 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19114089012145996 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.1924610137939453 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.1911458969116211 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.19289684295654297 | venv/final-6.0.0rc0 | |
line_3d | PyArrow | 0.1922590732574463 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21329593658447266 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21133899688720703 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.2137620449066162 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21126317977905273 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.2131943702697754 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21329498291015625 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21253609657287598 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21430420875549316 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.21279525756835938 | venv/final-6.0.0rc0 | |
area | PyArrow | 0.2118232250213623 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7351770401000977 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7408590316772461 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7395851612091064 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7369790077209473 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7401900291442871 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7368028163909912 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7373173236846924 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7443900108337402 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7440469264984131 | venv/final-6.0.0rc0 | |
bar | PyArrow | 0.7333691120147705 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6875860691070557 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6857790946960449 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.707103967666626 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6907000541687012 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6900949478149414 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6848950386047363 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6817770004272461 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6899871826171875 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.688615083694458 | venv/final-6.0.0rc0 | |
bar_polar | PyArrow | 0.6817898750305176 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7361772060394287 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7393600940704346 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7389709949493408 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7432079315185547 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7366480827331543 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.737541913986206 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.741178035736084 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.738631010055542 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7387089729309082 | venv/final-6.0.0rc0 | |
violin | PyArrow | 0.7376658916473389 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7385349273681641 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7382428646087646 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7311820983886719 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7378580570220947 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7366418838500977 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7394309043884277 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7340271472930908 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.736314058303833 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7359652519226074 | venv/final-6.0.0rc0 | |
box | PyArrow | 0.7379751205444336 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.4299337863922119 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.42231106758117676 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.4189329147338867 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.41731905937194824 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.420180082321167 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.4210941791534424 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.42278289794921875 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.4218118190765381 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.42760610580444336 | venv/final-6.0.0rc0 | |
ecdf | PyArrow | 0.4176950454711914 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7435052394866943 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7430710792541504 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.73661208152771 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7427866458892822 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7383072376251221 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.734691858291626 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.739691972732544 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7354738712310791 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.744013786315918 | venv/final-6.0.0rc0 | |
strip | PyArrow | 0.7384190559387207 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17608380317687988 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.1736431121826172 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.1736619472503662 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17439484596252441 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17504000663757324 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.1732180118560791 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17726588249206543 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17609691619873047 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.1756901741027832 | venv/final-6.0.0rc0 | |
histogram | PyArrow | 0.17323803901672363 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.49330472946167 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.4626359939575195 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.4765708446502686 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.482862710952759 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.491479158401489 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.468297958374023 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.476175308227539 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.491228103637695 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.483382940292358 | venv/final-6.0.0rc0 | |
pie | PyArrow | 4.487051963806152 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.1808919906616211 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.18192100524902344 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17935919761657715 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17809581756591797 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17795705795288086 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.18044686317443848 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17873811721801758 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.1800839900970459 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17740893363952637 | venv/final-6.0.0rc0 | |
funnel | PyArrow | 0.17767596244812012 | venv/final-6.0.0rc0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment