Skip to content

Instantly share code, notes, and snippets.

@ndrezn
Last active December 11, 2024 18:44
Show Gist options
  • Save ndrezn/65197e96171d3607a6333d58ecf026e2 to your computer and use it in GitHub Desktop.
Save ndrezn/65197e96171d3607a6333d58ecf026e2 to your computer and use it in GitHub Desktop.
# Script for generating figures following performance_analysis.py
# Authors: @ndrezn @emilykl
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
def read_and_clean_df(file_path):
df = pd.read_csv(file_path)
# In the environment column, replace "venv/final-5.24.1" with "v5.24"
# and "venv/final-6.0.0rc0" with "v6.0"
df['Environment'] = df['Environment'].replace(
{
"venv/final-5.24.1": "v5.24",
"venv/final-6.0.0rc0": "v6.0"
}
)
# Add "px." to the beginning of each value in the "Chart type" column
df['Chart type'] = "px." + df['Chart type']
# Aggregate by "Chart type", "Dataframe type", and "Environment" columns
# For each column, calculate the mean, min, and max of the "Time (s)" column
df_grouped = df.groupby(["Chart type", "Dataframe type", "Environment"]).agg(
{
"Time (s)": ["mean", "min", "max"]
}
)
# Flatten everything so it's just a normal table
df_grouped = df_grouped.reset_index()
# Flatten the column names as well
df_grouped.columns = ["Chart type", "Dataframe type", "Environment", "Mean Time (s)", "Min Time (s)", "Max Time (s)"]
df_grouped["error_y"] = df_grouped["Max Time (s)"] - df_grouped["Mean Time (s)"]
df_grouped["error_y_minus"] = -(df_grouped["Min Time (s)"] - df_grouped["Mean Time (s)"])
return df_grouped
def make_heatmap(df_grouped):
pivot_data = df_grouped.pivot_table(
index=["Chart type", "Dataframe type"], columns="Environment", values="Mean Time (s)"
).reset_index()
pivot_data["Improvement (%)"] = (
(pivot_data["v5.24"] - pivot_data["v6.0"]) / pivot_data["v5.24"]
) * 100
pivot_data["Improvement Factor"] = (
pivot_data["v5.24"] / pivot_data["v6.0"]
)
# heatmap_data_percentage = pivot_data.pivot(
# index="Chart type", columns="Dataframe type", values="Improvement (%)"
# )
heatmap_data_factor = pivot_data.pivot(
index="Chart type", columns="Dataframe type", values="Improvement Factor"
)
# Filter to a limited set of chart types (column "Chart type")
chart_types = ["px.scatter", "px.line", "px.bar", "px.box", "px.histogram"]
heatmap_data_factor = heatmap_data_factor[heatmap_data_factor.index.isin(chart_types)]
fig = go.Figure(
data=go.Heatmap(
z=heatmap_data_factor.values,
x=heatmap_data_factor.columns,
y=heatmap_data_factor.index,
colorscale = ["#CFCDEB", "#675AFF"],
# Hide colorbar
showscale=False,
text=[[f"{val:.1f}x" for val in row] for row in heatmap_data_factor.values],
hoverinfo="text",
)
)
fig.update_layout(
title=dict(
text="Performance improvement of Plotly v6.0 over v5.24 for large datasets",
x=0.5,
subtitle=dict(
text="Reduction factor in time required to generate a plot object for a 1-million-row dataframe",
font_color="#888888",
font_style="italic",
),
),
xaxis_title="Dataframe type",
yaxis_title="Chart type",
)
fig.update_traces(
text=[[f"{val:.1f}x" for val in row] for row in heatmap_data_factor.values],
texttemplate="%{text}",
)
return fig
def make_bar_chart(df_grouped):
df_for_bar = df_grouped.copy()
chart_types = ["px.scatter", "px.line", "px.bar", "px.box", "px.histogram"]
df_for_bar = df_for_bar[df_for_bar["Chart type"].isin(chart_types)]
fig = px.bar(
df_for_bar,
x="Chart type",
y="Mean Time (s)",
color="Environment",
facet_col="Dataframe type",
barmode="group",
title="Time to generate Plotly Express charts for 1 million rows",
color_discrete_map={"v5.24": "#FFA15A", "v6.0": "#675AFF"},
)
# Set titles of subplots
fig.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1]))
# Remove x-axis titles
fig.update_xaxes(title_text="")
# Set y-axis title, but ONLY for first subplot
fig.update_yaxes(title_text="Time (seconds)", row=1, col=1)
# Set legend title
fig.update_layout(legend_title="Plotly version")
# Center plot title
fig.update_layout(title_x=0.5)
return fig
if __name__ == '__main__':
df_grouped = read_and_clean_df("performance_results_final_ALL_CHARTS.csv")
fig_heatmap = make_heatmap(df_grouped)
fig_bar = make_bar_chart(df_grouped)
fig_heatmap.show()
fig_bar.show()
# Script for testing time to generate various Ploty Express charts
# Authors: @ndrezn @emilykl
# Note: The script is intended to be run in various virtual environments with
# different sets of dependencies installed; hence the reference to environments
# in the usage instructions. "Environment" can be any string describing the testing scenario
import sys
import time
from functools import wraps
import os
import polars as pl
import pandas as pd
import numpy as np
import plotly.express as px
try:
import orjson
except ImportError:
orjson = None
np.random.seed(42)
REPEAT = 21
IGNORE_FIRST = True
TO_JSON = True
NUM_ROWS=1_000_000
# Decorator to time a function multiple times and return the average time
def timeit(repeat=1, ignore_first=False):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
total_times = []
for i, _ in enumerate(range(repeat)):
start_time = time.time() # Record start time
_ = func(*args, **kwargs)
end_time = time.time() # Record end time
if ignore_first and i == 0: # Ignore the first run if ignore_first is True
continue
total_times.append(end_time - start_time) # Keep a list of all total times
return total_times
return wrapper
return decorator
# Generate a large dataset as a dict, with additional columns for color and facet
def generate_large_dataset_as_dict(num_rows=1_000_000):
return {
"x": np.random.uniform(0, 100, num_rows),
"y": np.random.uniform(0, 100, num_rows),
"z": np.random.uniform(0, 100, num_rows),
"category": np.random.choice(["A", "B", "C"], num_rows), # Original category
"colorby": np.random.choice(["Group 1", "Group 2"], num_rows), # Color by group
"facetby": np.random.choice(
["Region 1", "Region 2"], num_rows
), # Facet by region
}
# Make a Polars DataFrame from a dict
def make_polars(dataset_as_dict):
return pl.DataFrame(dataset_as_dict)
# Make a Pandas DataFrame from a dict
def make_pandas(dataset_as_dict):
return pd.DataFrame(dataset_as_dict)
# Make a PyArrow Table from a dict
def make_pyarrow(dataset_as_dict):
return pl.DataFrame(dataset_as_dict).to_arrow()
dataset_as_dict = generate_large_dataset_as_dict(num_rows=NUM_ROWS)
pandas_df = make_pandas(dataset_as_dict)
polars_df = make_polars(dataset_as_dict)
pyarrow_table = make_pyarrow(dataset_as_dict)
# Scatter plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_scatter(df, to_json=True):
fig = px.scatter(
df,
x="x",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Scatter Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Scatter 3d plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_scatter_3d(df, to_json=True):
fig = px.scatter_3d(
df,
x="x",
y="y",
z="z",
color="colorby", # Color by the "colorby" column
# facet_col="facetby", # Facet by the "facetby" column
# facet is NOT supported for scatter3D plots
title="Scatter 3D Plot with Color",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Scatter polar plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_scatter_polar(df, to_json=True):
fig = px.scatter_polar(
df,
r="x",
theta="y",
color="colorby", # Color by the "colorby" column
# facet_col="facetby", # Facet by the "facetby" column
# facet is NOT supported for scatter polar plots
title="Scatter Polar Plot with Color",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Scatter ternary plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_scatter_ternary(df, to_json=True):
fig = px.scatter_ternary(
df,
a="x",
b="y",
c="z",
color="colorby", # Color by the "colorby" column
# facet_col="facetby", # Facet by the "facetby" column
# facet is NOT supported for scatter ternary plots
title="Scatter Ternary Plot with Color",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Line plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_line(df, to_json=True):
fig = px.line(
df,
x="x",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Line Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Line 3d plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_line_3d(df, to_json=True):
fig = px.line_3d(
df,
x="x",
y="y",
z="z",
color="colorby", # Color by the "colorby" column
# facet_col="facetby", # Facet by the "facetby" column
# facet is NOT supported for line 3D plots
title="Line 3D Plot with Color",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Area plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_area(df, to_json=True):
fig = px.area(
df,
x="x",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Area Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Bar plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_bar(df, to_json=True):
fig = px.bar(
df,
x="category",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Bar Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Bar polar plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_bar_polar(df, to_json=True):
fig = px.bar_polar(
df,
r="y",
theta="category",
color="colorby", # Color by the "colorby" column
# facet_col="facetby", # Facet by the "facetby" column
# facet is NOT supported for bar polar plots
title="Bar Polar Plot with Color",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Violin plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_violin(df, to_json=True):
fig = px.violin(
df,
x="category",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Violin Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Box plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_box(df, to_json=True):
fig = px.box(
df,
x="category",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Box Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# ECDF plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_ecdf(df, to_json=True):
fig = px.ecdf(
df,
x="x",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="ECDF Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Strip plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_strip(df, to_json=True):
fig = px.strip(
df,
x="category",
y="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Strip Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Histogram plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_histogram(df, to_json=True):
fig = px.histogram(
df,
x="x",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Histogram Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Pie chart
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_pie(df, to_json=True):
fig = px.pie(
df,
names="category",
values="y",
color="colorby", # Color by the "colorby" column
facet_col="facetby", # Facet by the "facetby" column
title="Pie Chart with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Funnel plot
@timeit(repeat=REPEAT, ignore_first=IGNORE_FIRST)
def figure_generation_funnel(df, to_json=True):
fig = px.funnel(
df,
x="y",
color="category",
facet_col="facetby", # Facet by the "facetby" column
title="Funnel Plot with Color and Facet",
)
if to_json:
if orjson:
fig.to_json(engine="orjson")
else:
fig.to_json(engine="json")
# Function to test all charts and gather the times for Polars, Pandas, and PyArrow
def test_all_charts():
# List all functions to test
# Comment out to skip
# Note: This list does not include ALL Plotly Express chart types for various reasons
# The full list can be found here: https://plotly.com/python-api-reference/plotly.express.html
names_funcs = [
("scatter", figure_generation_scatter),
("scatter_3d", figure_generation_scatter_3d),
("scatter_polar", figure_generation_scatter_polar),
("scatter_ternary", figure_generation_scatter_ternary),
("line", figure_generation_line),
("line_3d", figure_generation_line_3d),
("area", figure_generation_area),
("bar", figure_generation_bar),
("bar_polar", figure_generation_bar_polar),
("violin", figure_generation_violin),
("box", figure_generation_box),
("ecdf", figure_generation_ecdf),
("strip", figure_generation_strip),
("histogram", figure_generation_histogram),
("pie", figure_generation_pie),
# ("funnel", figure_generation_funnel),
# There is a BUG with the above funnel plot code which shows up
# ONLY on the Narwhals branch -- need to investigate further
# Skipping for now
]
results = []
# Polars performance
print("Testing Polars...")
for name, func in names_funcs:
results.extend((name, "Polars", n) for n in func(polars_df, to_json=TO_JSON))
# Pandas performance
print("Testing Pandas...")
for name, func in names_funcs:
results.extend((name, "Pandas", n) for n in func(pandas_df, to_json=TO_JSON))
# PyArrow performance
print("Testing PyArrow...")
for name, func in names_funcs:
results.extend((name, "PyArrow", n) for n in func(pyarrow_table, to_json=TO_JSON))
return results
# Run the performance tests and append results to an existing CSV
def run_and_save_results(csv_filename, environment):
env_results = test_all_charts()
# Create DataFrame with separate columns for Chart Type and Dataframe Type
df = pl.DataFrame(
{
"Chart type": [result[0] for result in env_results],
"Dataframe type": [result[1] for result in env_results],
"Time (s)": [result[2] for result in env_results],
"Environment": [environment] * len(env_results),
}
)
# Check if file exists, if not, write CSV, otherwise append
if not os.path.exists(csv_filename):
df.write_csv(csv_filename)
print(f"Results saved to {csv_filename}")
else:
# Read existing CSV and concatenate new data
existing_df = pl.read_csv(csv_filename)
combined_df = pl.concat([existing_df, df], how="vertical")
combined_df.write_csv(csv_filename)
print(f"Results appended to {csv_filename}")
# Entry point for running the tests
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python performance_test.py <csv_filename> <environment-name>")
else:
csv_filename = sys.argv[1]
environment = sys.argv[2]
run_and_save_results(csv_filename, environment)
Chart type Dataframe type Time (s) Environment
scatter Polars 1.270895004272461 venv/final-5.24.1
scatter Polars 1.3048079013824463 venv/final-5.24.1
scatter Polars 1.2645249366760254 venv/final-5.24.1
scatter Polars 1.2689037322998047 venv/final-5.24.1
scatter Polars 1.2599449157714844 venv/final-5.24.1
scatter Polars 1.273914098739624 venv/final-5.24.1
scatter Polars 1.3083109855651855 venv/final-5.24.1
scatter Polars 1.2658936977386475 venv/final-5.24.1
scatter Polars 1.2735700607299805 venv/final-5.24.1
scatter Polars 1.264195203781128 venv/final-5.24.1
scatter_3d Polars 0.7237622737884521 venv/final-5.24.1
scatter_3d Polars 0.7192962169647217 venv/final-5.24.1
scatter_3d Polars 0.7169179916381836 venv/final-5.24.1
scatter_3d Polars 0.7373790740966797 venv/final-5.24.1
scatter_3d Polars 0.7275688648223877 venv/final-5.24.1
scatter_3d Polars 0.719825029373169 venv/final-5.24.1
scatter_3d Polars 0.7293469905853271 venv/final-5.24.1
scatter_3d Polars 0.7214648723602295 venv/final-5.24.1
scatter_3d Polars 0.7295401096343994 venv/final-5.24.1
scatter_3d Polars 0.7196660041809082 venv/final-5.24.1
scatter_polar Polars 0.664478063583374 venv/final-5.24.1
scatter_polar Polars 0.6651079654693604 venv/final-5.24.1
scatter_polar Polars 0.6623268127441406 venv/final-5.24.1
scatter_polar Polars 0.6650071144104004 venv/final-5.24.1
scatter_polar Polars 0.668287992477417 venv/final-5.24.1
scatter_polar Polars 0.6618950366973877 venv/final-5.24.1
scatter_polar Polars 0.7313292026519775 venv/final-5.24.1
scatter_polar Polars 0.6703250408172607 venv/final-5.24.1
scatter_polar Polars 0.6665740013122559 venv/final-5.24.1
scatter_polar Polars 0.6652116775512695 venv/final-5.24.1
scatter_ternary Polars 0.7241506576538086 venv/final-5.24.1
scatter_ternary Polars 0.7407248020172119 venv/final-5.24.1
scatter_ternary Polars 0.7386391162872314 venv/final-5.24.1
scatter_ternary Polars 0.7352006435394287 venv/final-5.24.1
scatter_ternary Polars 0.7235939502716064 venv/final-5.24.1
scatter_ternary Polars 0.722736120223999 venv/final-5.24.1
scatter_ternary Polars 0.7236981391906738 venv/final-5.24.1
scatter_ternary Polars 0.7249460220336914 venv/final-5.24.1
scatter_ternary Polars 0.7265129089355469 venv/final-5.24.1
scatter_ternary Polars 0.721052885055542 venv/final-5.24.1
line Polars 1.2644999027252197 venv/final-5.24.1
line Polars 1.2970457077026367 venv/final-5.24.1
line Polars 1.2570641040802002 venv/final-5.24.1
line Polars 1.275019884109497 venv/final-5.24.1
line Polars 1.2801568508148193 venv/final-5.24.1
line Polars 1.2511749267578125 venv/final-5.24.1
line Polars 1.2791779041290283 venv/final-5.24.1
line Polars 1.2532169818878174 venv/final-5.24.1
line Polars 1.263016939163208 venv/final-5.24.1
line Polars 1.2497589588165283 venv/final-5.24.1
line_3d Polars 0.7293570041656494 venv/final-5.24.1
line_3d Polars 0.7641239166259766 venv/final-5.24.1
line_3d Polars 0.7212100028991699 venv/final-5.24.1
line_3d Polars 0.7281222343444824 venv/final-5.24.1
line_3d Polars 0.7298569679260254 venv/final-5.24.1
line_3d Polars 0.726525068283081 venv/final-5.24.1
line_3d Polars 0.7248749732971191 venv/final-5.24.1
line_3d Polars 0.7358052730560303 venv/final-5.24.1
line_3d Polars 0.7328081130981445 venv/final-5.24.1
line_3d Polars 0.7321598529815674 venv/final-5.24.1
area Polars 1.2814571857452393 venv/final-5.24.1
area Polars 1.2718372344970703 venv/final-5.24.1
area Polars 1.2765886783599854 venv/final-5.24.1
area Polars 1.2626979351043701 venv/final-5.24.1
area Polars 1.2706139087677002 venv/final-5.24.1
area Polars 1.2674598693847656 venv/final-5.24.1
area Polars 1.258894920349121 venv/final-5.24.1
area Polars 1.2705662250518799 venv/final-5.24.1
area Polars 1.2703278064727783 venv/final-5.24.1
area Polars 1.2688782215118408 venv/final-5.24.1
bar Polars 2.2766051292419434 venv/final-5.24.1
bar Polars 2.2716617584228516 venv/final-5.24.1
bar Polars 2.2641830444335938 venv/final-5.24.1
bar Polars 2.26633882522583 venv/final-5.24.1
bar Polars 2.275895118713379 venv/final-5.24.1
bar Polars 2.257974863052368 venv/final-5.24.1
bar Polars 2.2752580642700195 venv/final-5.24.1
bar Polars 2.2627949714660645 venv/final-5.24.1
bar Polars 2.265787124633789 venv/final-5.24.1
bar Polars 2.2796409130096436 venv/final-5.24.1
bar_polar Polars 1.6760578155517578 venv/final-5.24.1
bar_polar Polars 1.669205904006958 venv/final-5.24.1
bar_polar Polars 1.6787259578704834 venv/final-5.24.1
bar_polar Polars 1.6673591136932373 venv/final-5.24.1
bar_polar Polars 1.6759700775146484 venv/final-5.24.1
bar_polar Polars 1.6721901893615723 venv/final-5.24.1
bar_polar Polars 1.685394048690796 venv/final-5.24.1
bar_polar Polars 1.6902079582214355 venv/final-5.24.1
bar_polar Polars 1.684758186340332 venv/final-5.24.1
bar_polar Polars 1.6755342483520508 venv/final-5.24.1
violin Polars 2.3459858894348145 venv/final-5.24.1
violin Polars 2.2959213256835938 venv/final-5.24.1
violin Polars 2.2910690307617188 venv/final-5.24.1
violin Polars 2.2904860973358154 venv/final-5.24.1
violin Polars 2.280269145965576 venv/final-5.24.1
violin Polars 2.275552988052368 venv/final-5.24.1
violin Polars 2.2935118675231934 venv/final-5.24.1
violin Polars 2.2773277759552 venv/final-5.24.1
violin Polars 2.284619092941284 venv/final-5.24.1
violin Polars 2.2880539894104004 venv/final-5.24.1
box Polars 2.289078950881958 venv/final-5.24.1
box Polars 2.2858848571777344 venv/final-5.24.1
box Polars 2.300610065460205 venv/final-5.24.1
box Polars 2.3001327514648438 venv/final-5.24.1
box Polars 2.2840378284454346 venv/final-5.24.1
box Polars 2.2783820629119873 venv/final-5.24.1
box Polars 2.2838027477264404 venv/final-5.24.1
box Polars 2.284080982208252 venv/final-5.24.1
box Polars 2.2978811264038086 venv/final-5.24.1
box Polars 2.2838680744171143 venv/final-5.24.1
ecdf Polars 1.4241130352020264 venv/final-5.24.1
ecdf Polars 1.4143061637878418 venv/final-5.24.1
ecdf Polars 1.429905891418457 venv/final-5.24.1
ecdf Polars 1.4354839324951172 venv/final-5.24.1
ecdf Polars 1.4168460369110107 venv/final-5.24.1
ecdf Polars 1.4100627899169922 venv/final-5.24.1
ecdf Polars 1.4107568264007568 venv/final-5.24.1
ecdf Polars 1.4124641418457031 venv/final-5.24.1
ecdf Polars 1.414017677307129 venv/final-5.24.1
ecdf Polars 1.4126882553100586 venv/final-5.24.1
strip Polars 2.2963340282440186 venv/final-5.24.1
strip Polars 2.337506055831909 venv/final-5.24.1
strip Polars 2.2912399768829346 venv/final-5.24.1
strip Polars 2.3043620586395264 venv/final-5.24.1
strip Polars 2.279782295227051 venv/final-5.24.1
strip Polars 2.303537130355835 venv/final-5.24.1
strip Polars 2.299302816390991 venv/final-5.24.1
strip Polars 2.285233736038208 venv/final-5.24.1
strip Polars 2.3091118335723877 venv/final-5.24.1
strip Polars 2.358424186706543 venv/final-5.24.1
histogram Polars 1.2437429428100586 venv/final-5.24.1
histogram Polars 1.2380809783935547 venv/final-5.24.1
histogram Polars 1.2346248626708984 venv/final-5.24.1
histogram Polars 1.2274727821350098 venv/final-5.24.1
histogram Polars 1.2466888427734375 venv/final-5.24.1
histogram Polars 1.2404518127441406 venv/final-5.24.1
histogram Polars 1.2403340339660645 venv/final-5.24.1
histogram Polars 1.2332241535186768 venv/final-5.24.1
histogram Polars 1.2344348430633545 venv/final-5.24.1
histogram Polars 1.2323110103607178 venv/final-5.24.1
pie Polars 5.435199975967407 venv/final-5.24.1
pie Polars 5.453827142715454 venv/final-5.24.1
pie Polars 5.44839882850647 venv/final-5.24.1
pie Polars 5.446609973907471 venv/final-5.24.1
pie Polars 5.431366920471191 venv/final-5.24.1
pie Polars 5.449784994125366 venv/final-5.24.1
pie Polars 5.463292121887207 venv/final-5.24.1
pie Polars 5.447933197021484 venv/final-5.24.1
pie Polars 5.452636003494263 venv/final-5.24.1
pie Polars 5.4598987102508545 venv/final-5.24.1
funnel Polars 1.1904377937316895 venv/final-5.24.1
funnel Polars 1.2131397724151611 venv/final-5.24.1
funnel Polars 1.1873540878295898 venv/final-5.24.1
funnel Polars 1.1899569034576416 venv/final-5.24.1
funnel Polars 1.2104508876800537 venv/final-5.24.1
funnel Polars 1.214331865310669 venv/final-5.24.1
funnel Polars 1.2239689826965332 venv/final-5.24.1
funnel Polars 1.1984541416168213 venv/final-5.24.1
funnel Polars 1.204409122467041 venv/final-5.24.1
funnel Polars 1.1915688514709473 venv/final-5.24.1
scatter Pandas 0.2814939022064209 venv/final-5.24.1
scatter Pandas 0.27912187576293945 venv/final-5.24.1
scatter Pandas 0.28457188606262207 venv/final-5.24.1
scatter Pandas 0.2818629741668701 venv/final-5.24.1
scatter Pandas 0.28495311737060547 venv/final-5.24.1
scatter Pandas 0.28139305114746094 venv/final-5.24.1
scatter Pandas 0.2863290309906006 venv/final-5.24.1
scatter Pandas 0.2782590389251709 venv/final-5.24.1
scatter Pandas 0.2777893543243408 venv/final-5.24.1
scatter Pandas 0.2800450325012207 venv/final-5.24.1
scatter_3d Pandas 0.24317693710327148 venv/final-5.24.1
scatter_3d Pandas 0.24440598487854004 venv/final-5.24.1
scatter_3d Pandas 0.24394917488098145 venv/final-5.24.1
scatter_3d Pandas 0.24428486824035645 venv/final-5.24.1
scatter_3d Pandas 0.2399890422821045 venv/final-5.24.1
scatter_3d Pandas 0.2429959774017334 venv/final-5.24.1
scatter_3d Pandas 0.2420201301574707 venv/final-5.24.1
scatter_3d Pandas 0.24323415756225586 venv/final-5.24.1
scatter_3d Pandas 0.24318313598632812 venv/final-5.24.1
scatter_3d Pandas 0.24335002899169922 venv/final-5.24.1
scatter_polar Pandas 0.19194984436035156 venv/final-5.24.1
scatter_polar Pandas 0.18963384628295898 venv/final-5.24.1
scatter_polar Pandas 0.19362306594848633 venv/final-5.24.1
scatter_polar Pandas 0.19025421142578125 venv/final-5.24.1
scatter_polar Pandas 0.191756010055542 venv/final-5.24.1
scatter_polar Pandas 0.18948674201965332 venv/final-5.24.1
scatter_polar Pandas 0.18993616104125977 venv/final-5.24.1
scatter_polar Pandas 0.18685412406921387 venv/final-5.24.1
scatter_polar Pandas 0.18977999687194824 venv/final-5.24.1
scatter_polar Pandas 0.18788599967956543 venv/final-5.24.1
scatter_ternary Pandas 0.24738812446594238 venv/final-5.24.1
scatter_ternary Pandas 0.25342273712158203 venv/final-5.24.1
scatter_ternary Pandas 0.2503490447998047 venv/final-5.24.1
scatter_ternary Pandas 0.2500946521759033 venv/final-5.24.1
scatter_ternary Pandas 0.250565767288208 venv/final-5.24.1
scatter_ternary Pandas 0.25040507316589355 venv/final-5.24.1
scatter_ternary Pandas 0.2522127628326416 venv/final-5.24.1
scatter_ternary Pandas 0.2507801055908203 venv/final-5.24.1
scatter_ternary Pandas 0.2501387596130371 venv/final-5.24.1
scatter_ternary Pandas 0.2515377998352051 venv/final-5.24.1
line Pandas 0.2764902114868164 venv/final-5.24.1
line Pandas 0.2731750011444092 venv/final-5.24.1
line Pandas 0.2718069553375244 venv/final-5.24.1
line Pandas 0.27368998527526855 venv/final-5.24.1
line Pandas 0.28086400032043457 venv/final-5.24.1
line Pandas 0.2804999351501465 venv/final-5.24.1
line Pandas 0.2722461223602295 venv/final-5.24.1
line Pandas 0.2696211338043213 venv/final-5.24.1
line Pandas 0.2748758792877197 venv/final-5.24.1
line Pandas 0.2778198719024658 venv/final-5.24.1
line_3d Pandas 0.2465527057647705 venv/final-5.24.1
line_3d Pandas 0.2602369785308838 venv/final-5.24.1
line_3d Pandas 0.24697089195251465 venv/final-5.24.1
line_3d Pandas 0.24910807609558105 venv/final-5.24.1
line_3d Pandas 0.24417901039123535 venv/final-5.24.1
line_3d Pandas 0.25939416885375977 venv/final-5.24.1
line_3d Pandas 0.24940872192382812 venv/final-5.24.1
line_3d Pandas 0.2530941963195801 venv/final-5.24.1
line_3d Pandas 0.24469685554504395 venv/final-5.24.1
line_3d Pandas 0.2700512409210205 venv/final-5.24.1
area Pandas 0.2822530269622803 venv/final-5.24.1
area Pandas 0.2849760055541992 venv/final-5.24.1
area Pandas 0.27802085876464844 venv/final-5.24.1
area Pandas 0.274874210357666 venv/final-5.24.1
area Pandas 0.27820277214050293 venv/final-5.24.1
area Pandas 0.280750036239624 venv/final-5.24.1
area Pandas 0.26905107498168945 venv/final-5.24.1
area Pandas 0.2760179042816162 venv/final-5.24.1
area Pandas 0.2720038890838623 venv/final-5.24.1
area Pandas 0.276583194732666 venv/final-5.24.1
bar Pandas 0.8206179141998291 venv/final-5.24.1
bar Pandas 0.8092818260192871 venv/final-5.24.1
bar Pandas 0.8137099742889404 venv/final-5.24.1
bar Pandas 0.813335657119751 venv/final-5.24.1
bar Pandas 0.8217580318450928 venv/final-5.24.1
bar Pandas 0.8138527870178223 venv/final-5.24.1
bar Pandas 0.8105618953704834 venv/final-5.24.1
bar Pandas 0.8108329772949219 venv/final-5.24.1
bar Pandas 0.8137862682342529 venv/final-5.24.1
bar Pandas 0.815270185470581 venv/final-5.24.1
bar_polar Pandas 0.7273027896881104 venv/final-5.24.1
bar_polar Pandas 0.7227728366851807 venv/final-5.24.1
bar_polar Pandas 0.7181401252746582 venv/final-5.24.1
bar_polar Pandas 0.7208733558654785 venv/final-5.24.1
bar_polar Pandas 0.7789733409881592 venv/final-5.24.1
bar_polar Pandas 0.7368221282958984 venv/final-5.24.1
bar_polar Pandas 0.7198038101196289 venv/final-5.24.1
bar_polar Pandas 0.7205359935760498 venv/final-5.24.1
bar_polar Pandas 0.719376802444458 venv/final-5.24.1
bar_polar Pandas 0.7229969501495361 venv/final-5.24.1
violin Pandas 0.8075461387634277 venv/final-5.24.1
violin Pandas 0.8133418560028076 venv/final-5.24.1
violin Pandas 0.8076536655426025 venv/final-5.24.1
violin Pandas 0.8113090991973877 venv/final-5.24.1
violin Pandas 0.8104619979858398 venv/final-5.24.1
violin Pandas 0.8096001148223877 venv/final-5.24.1
violin Pandas 0.8070211410522461 venv/final-5.24.1
violin Pandas 0.8089327812194824 venv/final-5.24.1
violin Pandas 0.8041839599609375 venv/final-5.24.1
violin Pandas 0.8116888999938965 venv/final-5.24.1
box Pandas 0.8039810657501221 venv/final-5.24.1
box Pandas 0.8115270137786865 venv/final-5.24.1
box Pandas 0.7971818447113037 venv/final-5.24.1
box Pandas 0.7961277961730957 venv/final-5.24.1
box Pandas 0.8014609813690186 venv/final-5.24.1
box Pandas 0.8040058612823486 venv/final-5.24.1
box Pandas 0.7968199253082275 venv/final-5.24.1
box Pandas 0.8108241558074951 venv/final-5.24.1
box Pandas 0.8049070835113525 venv/final-5.24.1
box Pandas 0.8031430244445801 venv/final-5.24.1
ecdf Pandas 0.418698787689209 venv/final-5.24.1
ecdf Pandas 0.4133729934692383 venv/final-5.24.1
ecdf Pandas 0.40982913970947266 venv/final-5.24.1
ecdf Pandas 0.40995097160339355 venv/final-5.24.1
ecdf Pandas 0.41041994094848633 venv/final-5.24.1
ecdf Pandas 0.4274113178253174 venv/final-5.24.1
ecdf Pandas 0.40658116340637207 venv/final-5.24.1
ecdf Pandas 0.41626691818237305 venv/final-5.24.1
ecdf Pandas 0.39998507499694824 venv/final-5.24.1
ecdf Pandas 0.4030649662017822 venv/final-5.24.1
strip Pandas 0.8165702819824219 venv/final-5.24.1
strip Pandas 0.8111288547515869 venv/final-5.24.1
strip Pandas 0.8104560375213623 venv/final-5.24.1
strip Pandas 0.8141069412231445 venv/final-5.24.1
strip Pandas 0.8184387683868408 venv/final-5.24.1
strip Pandas 0.80442214012146 venv/final-5.24.1
strip Pandas 0.8104009628295898 venv/final-5.24.1
strip Pandas 0.8101260662078857 venv/final-5.24.1
strip Pandas 0.8060579299926758 venv/final-5.24.1
strip Pandas 0.8095343112945557 venv/final-5.24.1
histogram Pandas 0.22515201568603516 venv/final-5.24.1
histogram Pandas 0.22100114822387695 venv/final-5.24.1
histogram Pandas 0.21982789039611816 venv/final-5.24.1
histogram Pandas 0.2194681167602539 venv/final-5.24.1
histogram Pandas 0.22443127632141113 venv/final-5.24.1
histogram Pandas 0.21934008598327637 venv/final-5.24.1
histogram Pandas 0.22315120697021484 venv/final-5.24.1
histogram Pandas 0.22440099716186523 venv/final-5.24.1
histogram Pandas 0.2210690975189209 venv/final-5.24.1
histogram Pandas 0.22040295600891113 venv/final-5.24.1
pie Pandas 3.9612960815429688 venv/final-5.24.1
pie Pandas 3.9501588344573975 venv/final-5.24.1
pie Pandas 3.9569058418273926 venv/final-5.24.1
pie Pandas 3.986732006072998 venv/final-5.24.1
pie Pandas 3.9598028659820557 venv/final-5.24.1
pie Pandas 3.965277910232544 venv/final-5.24.1
pie Pandas 3.95550799369812 venv/final-5.24.1
pie Pandas 3.9958019256591797 venv/final-5.24.1
pie Pandas 3.9708569049835205 venv/final-5.24.1
pie Pandas 3.949176073074341 venv/final-5.24.1
funnel Pandas 0.23158788681030273 venv/final-5.24.1
funnel Pandas 0.23217105865478516 venv/final-5.24.1
funnel Pandas 0.2293100357055664 venv/final-5.24.1
funnel Pandas 0.2246239185333252 venv/final-5.24.1
funnel Pandas 0.22957992553710938 venv/final-5.24.1
funnel Pandas 0.22509312629699707 venv/final-5.24.1
funnel Pandas 0.22818589210510254 venv/final-5.24.1
funnel Pandas 0.22761201858520508 venv/final-5.24.1
funnel Pandas 0.2286238670349121 venv/final-5.24.1
funnel Pandas 0.2270369529724121 venv/final-5.24.1
scatter PyArrow 1.2812669277191162 venv/final-5.24.1
scatter PyArrow 1.2783210277557373 venv/final-5.24.1
scatter PyArrow 1.2786571979522705 venv/final-5.24.1
scatter PyArrow 1.2703509330749512 venv/final-5.24.1
scatter PyArrow 1.273064136505127 venv/final-5.24.1
scatter PyArrow 1.2984471321105957 venv/final-5.24.1
scatter PyArrow 1.3026208877563477 venv/final-5.24.1
scatter PyArrow 1.2976429462432861 venv/final-5.24.1
scatter PyArrow 1.2978289127349854 venv/final-5.24.1
scatter PyArrow 1.2935290336608887 venv/final-5.24.1
scatter_3d PyArrow 0.7383589744567871 venv/final-5.24.1
scatter_3d PyArrow 0.729964017868042 venv/final-5.24.1
scatter_3d PyArrow 0.7373077869415283 venv/final-5.24.1
scatter_3d PyArrow 0.7340333461761475 venv/final-5.24.1
scatter_3d PyArrow 0.7410778999328613 venv/final-5.24.1
scatter_3d PyArrow 0.7390940189361572 venv/final-5.24.1
scatter_3d PyArrow 0.7378759384155273 venv/final-5.24.1
scatter_3d PyArrow 0.7390532493591309 venv/final-5.24.1
scatter_3d PyArrow 0.7392189502716064 venv/final-5.24.1
scatter_3d PyArrow 0.7393288612365723 venv/final-5.24.1
scatter_polar PyArrow 0.6956851482391357 venv/final-5.24.1
scatter_polar PyArrow 0.6794769763946533 venv/final-5.24.1
scatter_polar PyArrow 0.6785221099853516 venv/final-5.24.1
scatter_polar PyArrow 0.6834349632263184 venv/final-5.24.1
scatter_polar PyArrow 0.7033729553222656 venv/final-5.24.1
scatter_polar PyArrow 0.681769847869873 venv/final-5.24.1
scatter_polar PyArrow 0.69057297706604 venv/final-5.24.1
scatter_polar PyArrow 0.6952779293060303 venv/final-5.24.1
scatter_polar PyArrow 0.6916041374206543 venv/final-5.24.1
scatter_polar PyArrow 0.6961007118225098 venv/final-5.24.1
scatter_ternary PyArrow 0.7289798259735107 venv/final-5.24.1
scatter_ternary PyArrow 0.7423858642578125 venv/final-5.24.1
scatter_ternary PyArrow 0.7440581321716309 venv/final-5.24.1
scatter_ternary PyArrow 0.7532618045806885 venv/final-5.24.1
scatter_ternary PyArrow 0.7528843879699707 venv/final-5.24.1
scatter_ternary PyArrow 0.7586150169372559 venv/final-5.24.1
scatter_ternary PyArrow 0.7648129463195801 venv/final-5.24.1
scatter_ternary PyArrow 0.7573728561401367 venv/final-5.24.1
scatter_ternary PyArrow 0.7594242095947266 venv/final-5.24.1
scatter_ternary PyArrow 0.7347168922424316 venv/final-5.24.1
line PyArrow 1.279416799545288 venv/final-5.24.1
line PyArrow 1.3299567699432373 venv/final-5.24.1
line PyArrow 1.2832591533660889 venv/final-5.24.1
line PyArrow 1.288604974746704 venv/final-5.24.1
line PyArrow 1.2697029113769531 venv/final-5.24.1
line PyArrow 1.269171953201294 venv/final-5.24.1
line PyArrow 1.2665858268737793 venv/final-5.24.1
line PyArrow 1.2886567115783691 venv/final-5.24.1
line PyArrow 1.2900211811065674 venv/final-5.24.1
line PyArrow 1.2935421466827393 venv/final-5.24.1
line_3d PyArrow 0.7478272914886475 venv/final-5.24.1
line_3d PyArrow 0.7512469291687012 venv/final-5.24.1
line_3d PyArrow 0.7508049011230469 venv/final-5.24.1
line_3d PyArrow 0.7494611740112305 venv/final-5.24.1
line_3d PyArrow 0.7515649795532227 venv/final-5.24.1
line_3d PyArrow 0.7488727569580078 venv/final-5.24.1
line_3d PyArrow 0.7523398399353027 venv/final-5.24.1
line_3d PyArrow 0.7522051334381104 venv/final-5.24.1
line_3d PyArrow 0.754647970199585 venv/final-5.24.1
line_3d PyArrow 0.7540543079376221 venv/final-5.24.1
area PyArrow 1.2764360904693604 venv/final-5.24.1
area PyArrow 1.266195297241211 venv/final-5.24.1
area PyArrow 1.2651071548461914 venv/final-5.24.1
area PyArrow 1.2908260822296143 venv/final-5.24.1
area PyArrow 1.288701057434082 venv/final-5.24.1
area PyArrow 1.3058061599731445 venv/final-5.24.1
area PyArrow 1.2932581901550293 venv/final-5.24.1
area PyArrow 1.2933299541473389 venv/final-5.24.1
area PyArrow 1.3036727905273438 venv/final-5.24.1
area PyArrow 1.3065788745880127 venv/final-5.24.1
bar PyArrow 2.3357999324798584 venv/final-5.24.1
bar PyArrow 2.308412790298462 venv/final-5.24.1
bar PyArrow 2.317486047744751 venv/final-5.24.1
bar PyArrow 2.322280168533325 venv/final-5.24.1
bar PyArrow 2.309717893600464 venv/final-5.24.1
bar PyArrow 2.314548969268799 venv/final-5.24.1
bar PyArrow 2.3173060417175293 venv/final-5.24.1
bar PyArrow 2.3253180980682373 venv/final-5.24.1
bar PyArrow 2.3078482151031494 venv/final-5.24.1
bar PyArrow 2.325735330581665 venv/final-5.24.1
bar_polar PyArrow 1.6932988166809082 venv/final-5.24.1
bar_polar PyArrow 1.695373773574829 venv/final-5.24.1
bar_polar PyArrow 1.6993300914764404 venv/final-5.24.1
bar_polar PyArrow 1.6813008785247803 venv/final-5.24.1
bar_polar PyArrow 1.6951217651367188 venv/final-5.24.1
bar_polar PyArrow 1.6841130256652832 venv/final-5.24.1
bar_polar PyArrow 1.6847639083862305 venv/final-5.24.1
bar_polar PyArrow 1.6881508827209473 venv/final-5.24.1
bar_polar PyArrow 1.668342113494873 venv/final-5.24.1
bar_polar PyArrow 1.7349822521209717 venv/final-5.24.1
violin PyArrow 2.369965076446533 venv/final-5.24.1
violin PyArrow 2.308284282684326 venv/final-5.24.1
violin PyArrow 2.338643789291382 venv/final-5.24.1
violin PyArrow 2.3315062522888184 venv/final-5.24.1
violin PyArrow 2.2985949516296387 venv/final-5.24.1
violin PyArrow 2.302136182785034 venv/final-5.24.1
violin PyArrow 2.300887107849121 venv/final-5.24.1
violin PyArrow 2.314206838607788 venv/final-5.24.1
violin PyArrow 2.2997732162475586 venv/final-5.24.1
violin PyArrow 2.3211281299591064 venv/final-5.24.1
box PyArrow 2.2950069904327393 venv/final-5.24.1
box PyArrow 2.3030667304992676 venv/final-5.24.1
box PyArrow 2.338286876678467 venv/final-5.24.1
box PyArrow 2.333030939102173 venv/final-5.24.1
box PyArrow 2.3173868656158447 venv/final-5.24.1
box PyArrow 2.3146848678588867 venv/final-5.24.1
box PyArrow 2.289876937866211 venv/final-5.24.1
box PyArrow 2.2966978549957275 venv/final-5.24.1
box PyArrow 2.2941150665283203 venv/final-5.24.1
box PyArrow 2.3085291385650635 venv/final-5.24.1
ecdf PyArrow 1.422987937927246 venv/final-5.24.1
ecdf PyArrow 1.428412914276123 venv/final-5.24.1
ecdf PyArrow 1.4151639938354492 venv/final-5.24.1
ecdf PyArrow 1.4213659763336182 venv/final-5.24.1
ecdf PyArrow 1.423130750656128 venv/final-5.24.1
ecdf PyArrow 1.4507310390472412 venv/final-5.24.1
ecdf PyArrow 1.4234681129455566 venv/final-5.24.1
ecdf PyArrow 1.416182041168213 venv/final-5.24.1
ecdf PyArrow 1.4152770042419434 venv/final-5.24.1
ecdf PyArrow 1.4189419746398926 venv/final-5.24.1
strip PyArrow 2.312540054321289 venv/final-5.24.1
strip PyArrow 2.339064121246338 venv/final-5.24.1
strip PyArrow 2.2951109409332275 venv/final-5.24.1
strip PyArrow 2.328727960586548 venv/final-5.24.1
strip PyArrow 2.31152081489563 venv/final-5.24.1
strip PyArrow 2.3461761474609375 venv/final-5.24.1
strip PyArrow 2.3144707679748535 venv/final-5.24.1
strip PyArrow 2.3146190643310547 venv/final-5.24.1
strip PyArrow 2.3186659812927246 venv/final-5.24.1
strip PyArrow 2.326824188232422 venv/final-5.24.1
histogram PyArrow 1.2451660633087158 venv/final-5.24.1
histogram PyArrow 1.2599501609802246 venv/final-5.24.1
histogram PyArrow 1.2772161960601807 venv/final-5.24.1
histogram PyArrow 1.2557189464569092 venv/final-5.24.1
histogram PyArrow 1.2437388896942139 venv/final-5.24.1
histogram PyArrow 1.2364840507507324 venv/final-5.24.1
histogram PyArrow 1.2529098987579346 venv/final-5.24.1
histogram PyArrow 1.2633190155029297 venv/final-5.24.1
histogram PyArrow 1.2264728546142578 venv/final-5.24.1
histogram PyArrow 1.2495949268341064 venv/final-5.24.1
pie PyArrow 5.5205230712890625 venv/final-5.24.1
pie PyArrow 5.524170875549316 venv/final-5.24.1
pie PyArrow 5.500594139099121 venv/final-5.24.1
pie PyArrow 5.515862941741943 venv/final-5.24.1
pie PyArrow 5.518378973007202 venv/final-5.24.1
pie PyArrow 5.518615007400513 venv/final-5.24.1
pie PyArrow 5.50267219543457 venv/final-5.24.1
pie PyArrow 5.535560131072998 venv/final-5.24.1
pie PyArrow 5.512987852096558 venv/final-5.24.1
pie PyArrow 5.520418643951416 venv/final-5.24.1
funnel PyArrow 1.2082409858703613 venv/final-5.24.1
funnel PyArrow 1.2055878639221191 venv/final-5.24.1
funnel PyArrow 1.2041139602661133 venv/final-5.24.1
funnel PyArrow 1.1943309307098389 venv/final-5.24.1
funnel PyArrow 1.2064540386199951 venv/final-5.24.1
funnel PyArrow 1.2141749858856201 venv/final-5.24.1
funnel PyArrow 1.2057721614837646 venv/final-5.24.1
funnel PyArrow 1.1922359466552734 venv/final-5.24.1
funnel PyArrow 1.1919100284576416 venv/final-5.24.1
funnel PyArrow 1.2005112171173096 venv/final-5.24.1
scatter Polars 0.12102699279785156 venv/final-6.0.0rc0
scatter Polars 0.11979103088378906 venv/final-6.0.0rc0
scatter Polars 0.12257909774780273 venv/final-6.0.0rc0
scatter Polars 0.1224970817565918 venv/final-6.0.0rc0
scatter Polars 0.1201632022857666 venv/final-6.0.0rc0
scatter Polars 0.14026093482971191 venv/final-6.0.0rc0
scatter Polars 0.12021088600158691 venv/final-6.0.0rc0
scatter Polars 0.1176900863647461 venv/final-6.0.0rc0
scatter Polars 0.11942720413208008 venv/final-6.0.0rc0
scatter Polars 0.11725902557373047 venv/final-6.0.0rc0
scatter_3d Polars 0.14950990676879883 venv/final-6.0.0rc0
scatter_3d Polars 0.15137100219726562 venv/final-6.0.0rc0
scatter_3d Polars 0.14812874794006348 venv/final-6.0.0rc0
scatter_3d Polars 0.15421009063720703 venv/final-6.0.0rc0
scatter_3d Polars 0.1526191234588623 venv/final-6.0.0rc0
scatter_3d Polars 0.1425328254699707 venv/final-6.0.0rc0
scatter_3d Polars 0.1430950164794922 venv/final-6.0.0rc0
scatter_3d Polars 0.14081096649169922 venv/final-6.0.0rc0
scatter_3d Polars 0.14074015617370605 venv/final-6.0.0rc0
scatter_3d Polars 0.1445789337158203 venv/final-6.0.0rc0
scatter_polar Polars 0.10234689712524414 venv/final-6.0.0rc0
scatter_polar Polars 0.10162520408630371 venv/final-6.0.0rc0
scatter_polar Polars 0.10372805595397949 venv/final-6.0.0rc0
scatter_polar Polars 0.10167789459228516 venv/final-6.0.0rc0
scatter_polar Polars 0.10095906257629395 venv/final-6.0.0rc0
scatter_polar Polars 0.0997922420501709 venv/final-6.0.0rc0
scatter_polar Polars 0.09998226165771484 venv/final-6.0.0rc0
scatter_polar Polars 0.10147881507873535 venv/final-6.0.0rc0
scatter_polar Polars 0.10109496116638184 venv/final-6.0.0rc0
scatter_polar Polars 0.10040926933288574 venv/final-6.0.0rc0
scatter_ternary Polars 0.1463172435760498 venv/final-6.0.0rc0
scatter_ternary Polars 0.14179420471191406 venv/final-6.0.0rc0
scatter_ternary Polars 0.14579391479492188 venv/final-6.0.0rc0
scatter_ternary Polars 0.14303803443908691 venv/final-6.0.0rc0
scatter_ternary Polars 0.14690208435058594 venv/final-6.0.0rc0
scatter_ternary Polars 0.14207983016967773 venv/final-6.0.0rc0
scatter_ternary Polars 0.14480185508728027 venv/final-6.0.0rc0
scatter_ternary Polars 0.14642596244812012 venv/final-6.0.0rc0
scatter_ternary Polars 0.14752411842346191 venv/final-6.0.0rc0
scatter_ternary Polars 0.1427290439605713 venv/final-6.0.0rc0
line Polars 0.1194000244140625 venv/final-6.0.0rc0
line Polars 0.11695384979248047 venv/final-6.0.0rc0
line Polars 0.11897611618041992 venv/final-6.0.0rc0
line Polars 0.12178802490234375 venv/final-6.0.0rc0
line Polars 0.12116408348083496 venv/final-6.0.0rc0
line Polars 0.11929106712341309 venv/final-6.0.0rc0
line Polars 0.11934995651245117 venv/final-6.0.0rc0
line Polars 0.12136697769165039 venv/final-6.0.0rc0
line Polars 0.12070989608764648 venv/final-6.0.0rc0
line Polars 0.11732697486877441 venv/final-6.0.0rc0
line_3d Polars 0.14131402969360352 venv/final-6.0.0rc0
line_3d Polars 0.14463114738464355 venv/final-6.0.0rc0
line_3d Polars 0.14469504356384277 venv/final-6.0.0rc0
line_3d Polars 0.14122700691223145 venv/final-6.0.0rc0
line_3d Polars 0.14217305183410645 venv/final-6.0.0rc0
line_3d Polars 0.1418776512145996 venv/final-6.0.0rc0
line_3d Polars 0.14190983772277832 venv/final-6.0.0rc0
line_3d Polars 0.13941001892089844 venv/final-6.0.0rc0
line_3d Polars 0.14097213745117188 venv/final-6.0.0rc0
line_3d Polars 0.14393925666809082 venv/final-6.0.0rc0
area Polars 0.11682677268981934 venv/final-6.0.0rc0
area Polars 0.12448978424072266 venv/final-6.0.0rc0
area Polars 0.11726593971252441 venv/final-6.0.0rc0
area Polars 0.12136101722717285 venv/final-6.0.0rc0
area Polars 0.1163167953491211 venv/final-6.0.0rc0
area Polars 0.12077021598815918 venv/final-6.0.0rc0
area Polars 0.11705303192138672 venv/final-6.0.0rc0
area Polars 0.11934685707092285 venv/final-6.0.0rc0
area Polars 0.11463403701782227 venv/final-6.0.0rc0
area Polars 0.12321996688842773 venv/final-6.0.0rc0
bar Polars 0.6642990112304688 venv/final-6.0.0rc0
bar Polars 0.6643402576446533 venv/final-6.0.0rc0
bar Polars 0.7166652679443359 venv/final-6.0.0rc0
bar Polars 0.653904914855957 venv/final-6.0.0rc0
bar Polars 0.6599249839782715 venv/final-6.0.0rc0
bar Polars 0.6488893032073975 venv/final-6.0.0rc0
bar Polars 0.6537683010101318 venv/final-6.0.0rc0
bar Polars 0.6484532356262207 venv/final-6.0.0rc0
bar Polars 0.6587958335876465 venv/final-6.0.0rc0
bar Polars 0.6517229080200195 venv/final-6.0.0rc0
bar_polar Polars 0.6353662014007568 venv/final-6.0.0rc0
bar_polar Polars 0.6333541870117188 venv/final-6.0.0rc0
bar_polar Polars 0.6335010528564453 venv/final-6.0.0rc0
bar_polar Polars 0.6306238174438477 venv/final-6.0.0rc0
bar_polar Polars 0.6338889598846436 venv/final-6.0.0rc0
bar_polar Polars 0.6332669258117676 venv/final-6.0.0rc0
bar_polar Polars 0.6383559703826904 venv/final-6.0.0rc0
bar_polar Polars 0.6410677433013916 venv/final-6.0.0rc0
bar_polar Polars 0.6426100730895996 venv/final-6.0.0rc0
bar_polar Polars 0.6310040950775146 venv/final-6.0.0rc0
violin Polars 0.6462149620056152 venv/final-6.0.0rc0
violin Polars 0.6443679332733154 venv/final-6.0.0rc0
violin Polars 0.6509859561920166 venv/final-6.0.0rc0
violin Polars 0.6588599681854248 venv/final-6.0.0rc0
violin Polars 0.6485788822174072 venv/final-6.0.0rc0
violin Polars 0.6552090644836426 venv/final-6.0.0rc0
violin Polars 0.6500201225280762 venv/final-6.0.0rc0
violin Polars 0.6480257511138916 venv/final-6.0.0rc0
violin Polars 0.6469500064849854 venv/final-6.0.0rc0
violin Polars 0.6483860015869141 venv/final-6.0.0rc0
box Polars 0.6526751518249512 venv/final-6.0.0rc0
box Polars 0.6465790271759033 venv/final-6.0.0rc0
box Polars 0.64373779296875 venv/final-6.0.0rc0
box Polars 0.6494259834289551 venv/final-6.0.0rc0
box Polars 0.6520740985870361 venv/final-6.0.0rc0
box Polars 0.6487312316894531 venv/final-6.0.0rc0
box Polars 0.6407182216644287 venv/final-6.0.0rc0
box Polars 0.64404296875 venv/final-6.0.0rc0
box Polars 0.6461308002471924 venv/final-6.0.0rc0
box Polars 0.6479039192199707 venv/final-6.0.0rc0
ecdf Polars 0.15049481391906738 venv/final-6.0.0rc0
ecdf Polars 0.15007781982421875 venv/final-6.0.0rc0
ecdf Polars 0.15042376518249512 venv/final-6.0.0rc0
ecdf Polars 0.15343618392944336 venv/final-6.0.0rc0
ecdf Polars 0.14723920822143555 venv/final-6.0.0rc0
ecdf Polars 0.15252041816711426 venv/final-6.0.0rc0
ecdf Polars 0.15136933326721191 venv/final-6.0.0rc0
ecdf Polars 0.1467740535736084 venv/final-6.0.0rc0
ecdf Polars 0.14713597297668457 venv/final-6.0.0rc0
ecdf Polars 0.14905190467834473 venv/final-6.0.0rc0
strip Polars 0.6471588611602783 venv/final-6.0.0rc0
strip Polars 0.722606897354126 venv/final-6.0.0rc0
strip Polars 0.6612436771392822 venv/final-6.0.0rc0
strip Polars 0.6654131412506104 venv/final-6.0.0rc0
strip Polars 0.6563150882720947 venv/final-6.0.0rc0
strip Polars 0.651951789855957 venv/final-6.0.0rc0
strip Polars 0.6508290767669678 venv/final-6.0.0rc0
strip Polars 0.65476393699646 venv/final-6.0.0rc0
strip Polars 0.6565358638763428 venv/final-6.0.0rc0
strip Polars 0.6522510051727295 venv/final-6.0.0rc0
histogram Polars 0.08602285385131836 venv/final-6.0.0rc0
histogram Polars 0.08643794059753418 venv/final-6.0.0rc0
histogram Polars 0.08656501770019531 venv/final-6.0.0rc0
histogram Polars 0.08889412879943848 venv/final-6.0.0rc0
histogram Polars 0.0828092098236084 venv/final-6.0.0rc0
histogram Polars 0.08644700050354004 venv/final-6.0.0rc0
histogram Polars 0.08542418479919434 venv/final-6.0.0rc0
histogram Polars 0.08417034149169922 venv/final-6.0.0rc0
histogram Polars 0.08816933631896973 venv/final-6.0.0rc0
histogram Polars 0.08733320236206055 venv/final-6.0.0rc0
pie Polars 3.9770541191101074 venv/final-6.0.0rc0
pie Polars 3.949625015258789 venv/final-6.0.0rc0
pie Polars 3.922612190246582 venv/final-6.0.0rc0
pie Polars 3.943241834640503 venv/final-6.0.0rc0
pie Polars 3.9393091201782227 venv/final-6.0.0rc0
pie Polars 3.943856954574585 venv/final-6.0.0rc0
pie Polars 3.92482590675354 venv/final-6.0.0rc0
pie Polars 3.9317407608032227 venv/final-6.0.0rc0
pie Polars 3.9484148025512695 venv/final-6.0.0rc0
pie Polars 3.9792370796203613 venv/final-6.0.0rc0
funnel Polars 0.10611200332641602 venv/final-6.0.0rc0
funnel Polars 0.10410904884338379 venv/final-6.0.0rc0
funnel Polars 0.10642504692077637 venv/final-6.0.0rc0
funnel Polars 0.10451197624206543 venv/final-6.0.0rc0
funnel Polars 0.10704374313354492 venv/final-6.0.0rc0
funnel Polars 0.10286116600036621 venv/final-6.0.0rc0
funnel Polars 0.10226106643676758 venv/final-6.0.0rc0
funnel Polars 0.10187196731567383 venv/final-6.0.0rc0
funnel Polars 0.10029006004333496 venv/final-6.0.0rc0
funnel Polars 0.10623502731323242 venv/final-6.0.0rc0
scatter Pandas 0.2407209873199463 venv/final-6.0.0rc0
scatter Pandas 0.23581624031066895 venv/final-6.0.0rc0
scatter Pandas 0.23986029624938965 venv/final-6.0.0rc0
scatter Pandas 0.23675107955932617 venv/final-6.0.0rc0
scatter Pandas 0.23464083671569824 venv/final-6.0.0rc0
scatter Pandas 0.23616814613342285 venv/final-6.0.0rc0
scatter Pandas 0.24105501174926758 venv/final-6.0.0rc0
scatter Pandas 0.2385568618774414 venv/final-6.0.0rc0
scatter Pandas 0.24643397331237793 venv/final-6.0.0rc0
scatter Pandas 0.23716402053833008 venv/final-6.0.0rc0
scatter_3d Pandas 0.19298005104064941 venv/final-6.0.0rc0
scatter_3d Pandas 0.20007967948913574 venv/final-6.0.0rc0
scatter_3d Pandas 0.19470000267028809 venv/final-6.0.0rc0
scatter_3d Pandas 0.19397401809692383 venv/final-6.0.0rc0
scatter_3d Pandas 0.19752883911132812 venv/final-6.0.0rc0
scatter_3d Pandas 0.19241023063659668 venv/final-6.0.0rc0
scatter_3d Pandas 0.19001436233520508 venv/final-6.0.0rc0
scatter_3d Pandas 0.1904160976409912 venv/final-6.0.0rc0
scatter_3d Pandas 0.19415879249572754 venv/final-6.0.0rc0
scatter_3d Pandas 0.19360899925231934 venv/final-6.0.0rc0
scatter_polar Pandas 0.15246891975402832 venv/final-6.0.0rc0
scatter_polar Pandas 0.15187692642211914 venv/final-6.0.0rc0
scatter_polar Pandas 0.15282678604125977 venv/final-6.0.0rc0
scatter_polar Pandas 0.1472461223602295 venv/final-6.0.0rc0
scatter_polar Pandas 0.15173888206481934 venv/final-6.0.0rc0
scatter_polar Pandas 0.15117597579956055 venv/final-6.0.0rc0
scatter_polar Pandas 0.1505887508392334 venv/final-6.0.0rc0
scatter_polar Pandas 0.14888596534729004 venv/final-6.0.0rc0
scatter_polar Pandas 0.15067076683044434 venv/final-6.0.0rc0
scatter_polar Pandas 0.14905905723571777 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19498395919799805 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19555091857910156 venv/final-6.0.0rc0
scatter_ternary Pandas 0.1956019401550293 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19478201866149902 venv/final-6.0.0rc0
scatter_ternary Pandas 0.1885819435119629 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19432282447814941 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19228601455688477 venv/final-6.0.0rc0
scatter_ternary Pandas 0.1951000690460205 venv/final-6.0.0rc0
scatter_ternary Pandas 0.198045015335083 venv/final-6.0.0rc0
scatter_ternary Pandas 0.19433093070983887 venv/final-6.0.0rc0
line Pandas 0.23517894744873047 venv/final-6.0.0rc0
line Pandas 0.2331240177154541 venv/final-6.0.0rc0
line Pandas 0.23269009590148926 venv/final-6.0.0rc0
line Pandas 0.23935484886169434 venv/final-6.0.0rc0
line Pandas 0.23648309707641602 venv/final-6.0.0rc0
line Pandas 0.23558688163757324 venv/final-6.0.0rc0
line Pandas 0.23259592056274414 venv/final-6.0.0rc0
line Pandas 0.23468899726867676 venv/final-6.0.0rc0
line Pandas 0.23326373100280762 venv/final-6.0.0rc0
line Pandas 0.23333191871643066 venv/final-6.0.0rc0
line_3d Pandas 0.1945791244506836 venv/final-6.0.0rc0
line_3d Pandas 0.19420409202575684 venv/final-6.0.0rc0
line_3d Pandas 0.19429802894592285 venv/final-6.0.0rc0
line_3d Pandas 0.19548296928405762 venv/final-6.0.0rc0
line_3d Pandas 0.19022297859191895 venv/final-6.0.0rc0
line_3d Pandas 0.18995881080627441 venv/final-6.0.0rc0
line_3d Pandas 0.19271302223205566 venv/final-6.0.0rc0
line_3d Pandas 0.18905901908874512 venv/final-6.0.0rc0
line_3d Pandas 0.1940162181854248 venv/final-6.0.0rc0
line_3d Pandas 0.1913280487060547 venv/final-6.0.0rc0
area Pandas 0.2290811538696289 venv/final-6.0.0rc0
area Pandas 0.24019098281860352 venv/final-6.0.0rc0
area Pandas 0.2327110767364502 venv/final-6.0.0rc0
area Pandas 0.23603200912475586 venv/final-6.0.0rc0
area Pandas 0.23041319847106934 venv/final-6.0.0rc0
area Pandas 0.2294018268585205 venv/final-6.0.0rc0
area Pandas 0.23068499565124512 venv/final-6.0.0rc0
area Pandas 0.23134517669677734 venv/final-6.0.0rc0
area Pandas 0.23235702514648438 venv/final-6.0.0rc0
area Pandas 0.23343181610107422 venv/final-6.0.0rc0
bar Pandas 0.8048241138458252 venv/final-6.0.0rc0
bar Pandas 0.8150501251220703 venv/final-6.0.0rc0
bar Pandas 0.813621997833252 venv/final-6.0.0rc0
bar Pandas 0.8088159561157227 venv/final-6.0.0rc0
bar Pandas 0.798130989074707 venv/final-6.0.0rc0
bar Pandas 0.8143806457519531 venv/final-6.0.0rc0
bar Pandas 0.809384822845459 venv/final-6.0.0rc0
bar Pandas 0.8086910247802734 venv/final-6.0.0rc0
bar Pandas 0.8001463413238525 venv/final-6.0.0rc0
bar Pandas 0.8051352500915527 venv/final-6.0.0rc0
bar_polar Pandas 0.7079801559448242 venv/final-6.0.0rc0
bar_polar Pandas 0.710968017578125 venv/final-6.0.0rc0
bar_polar Pandas 0.7044670581817627 venv/final-6.0.0rc0
bar_polar Pandas 0.7035520076751709 venv/final-6.0.0rc0
bar_polar Pandas 0.7011380195617676 venv/final-6.0.0rc0
bar_polar Pandas 0.7108721733093262 venv/final-6.0.0rc0
bar_polar Pandas 0.7046689987182617 venv/final-6.0.0rc0
bar_polar Pandas 0.7038190364837646 venv/final-6.0.0rc0
bar_polar Pandas 0.7058401107788086 venv/final-6.0.0rc0
bar_polar Pandas 0.7040829658508301 venv/final-6.0.0rc0
violin Pandas 0.8044216632843018 venv/final-6.0.0rc0
violin Pandas 0.8077702522277832 venv/final-6.0.0rc0
violin Pandas 0.807319164276123 venv/final-6.0.0rc0
violin Pandas 0.8059821128845215 venv/final-6.0.0rc0
violin Pandas 0.808189868927002 venv/final-6.0.0rc0
violin Pandas 0.8153319358825684 venv/final-6.0.0rc0
violin Pandas 0.8173141479492188 venv/final-6.0.0rc0
violin Pandas 0.8044989109039307 venv/final-6.0.0rc0
violin Pandas 0.8089029788970947 venv/final-6.0.0rc0
violin Pandas 0.8064498901367188 venv/final-6.0.0rc0
box Pandas 0.8025810718536377 venv/final-6.0.0rc0
box Pandas 0.796727180480957 venv/final-6.0.0rc0
box Pandas 0.8054769039154053 venv/final-6.0.0rc0
box Pandas 0.79693603515625 venv/final-6.0.0rc0
box Pandas 0.7948970794677734 venv/final-6.0.0rc0
box Pandas 0.7989091873168945 venv/final-6.0.0rc0
box Pandas 0.8008308410644531 venv/final-6.0.0rc0
box Pandas 0.7954521179199219 venv/final-6.0.0rc0
box Pandas 0.8017590045928955 venv/final-6.0.0rc0
box Pandas 0.8102970123291016 venv/final-6.0.0rc0
ecdf Pandas 0.3889148235321045 venv/final-6.0.0rc0
ecdf Pandas 0.39505887031555176 venv/final-6.0.0rc0
ecdf Pandas 0.39429187774658203 venv/final-6.0.0rc0
ecdf Pandas 0.4014122486114502 venv/final-6.0.0rc0
ecdf Pandas 0.38929009437561035 venv/final-6.0.0rc0
ecdf Pandas 0.38822460174560547 venv/final-6.0.0rc0
ecdf Pandas 0.3957240581512451 venv/final-6.0.0rc0
ecdf Pandas 0.41277599334716797 venv/final-6.0.0rc0
ecdf Pandas 0.3900790214538574 venv/final-6.0.0rc0
ecdf Pandas 0.39546799659729004 venv/final-6.0.0rc0
strip Pandas 0.8120851516723633 venv/final-6.0.0rc0
strip Pandas 0.8008389472961426 venv/final-6.0.0rc0
strip Pandas 0.8156259059906006 venv/final-6.0.0rc0
strip Pandas 0.8042178153991699 venv/final-6.0.0rc0
strip Pandas 0.8047499656677246 venv/final-6.0.0rc0
strip Pandas 0.7996323108673096 venv/final-6.0.0rc0
strip Pandas 0.8049399852752686 venv/final-6.0.0rc0
strip Pandas 0.803720235824585 venv/final-6.0.0rc0
strip Pandas 0.8099713325500488 venv/final-6.0.0rc0
strip Pandas 0.8044722080230713 venv/final-6.0.0rc0
histogram Pandas 0.19082307815551758 venv/final-6.0.0rc0
histogram Pandas 0.19544100761413574 venv/final-6.0.0rc0
histogram Pandas 0.1914350986480713 venv/final-6.0.0rc0
histogram Pandas 0.19694995880126953 venv/final-6.0.0rc0
histogram Pandas 0.1946251392364502 venv/final-6.0.0rc0
histogram Pandas 0.19135808944702148 venv/final-6.0.0rc0
histogram Pandas 0.19377732276916504 venv/final-6.0.0rc0
histogram Pandas 0.20217394828796387 venv/final-6.0.0rc0
histogram Pandas 0.19216704368591309 venv/final-6.0.0rc0
histogram Pandas 0.1931297779083252 venv/final-6.0.0rc0
pie Pandas 4.041480779647827 venv/final-6.0.0rc0
pie Pandas 4.000250816345215 venv/final-6.0.0rc0
pie Pandas 4.019212245941162 venv/final-6.0.0rc0
pie Pandas 4.001894950866699 venv/final-6.0.0rc0
pie Pandas 4.010812759399414 venv/final-6.0.0rc0
pie Pandas 4.027556896209717 venv/final-6.0.0rc0
pie Pandas 4.016187906265259 venv/final-6.0.0rc0
pie Pandas 4.03218412399292 venv/final-6.0.0rc0
pie Pandas 4.015374660491943 venv/final-6.0.0rc0
pie Pandas 4.027557849884033 venv/final-6.0.0rc0
funnel Pandas 0.20628929138183594 venv/final-6.0.0rc0
funnel Pandas 0.20442414283752441 venv/final-6.0.0rc0
funnel Pandas 0.2068939208984375 venv/final-6.0.0rc0
funnel Pandas 0.20798516273498535 venv/final-6.0.0rc0
funnel Pandas 0.20306873321533203 venv/final-6.0.0rc0
funnel Pandas 0.20741486549377441 venv/final-6.0.0rc0
funnel Pandas 0.20446300506591797 venv/final-6.0.0rc0
funnel Pandas 0.20084881782531738 venv/final-6.0.0rc0
funnel Pandas 0.2281818389892578 venv/final-6.0.0rc0
funnel Pandas 0.20157480239868164 venv/final-6.0.0rc0
scatter PyArrow 0.21357488632202148 venv/final-6.0.0rc0
scatter PyArrow 0.21457600593566895 venv/final-6.0.0rc0
scatter PyArrow 0.21590304374694824 venv/final-6.0.0rc0
scatter PyArrow 0.21458196640014648 venv/final-6.0.0rc0
scatter PyArrow 0.2179419994354248 venv/final-6.0.0rc0
scatter PyArrow 0.2149050235748291 venv/final-6.0.0rc0
scatter PyArrow 0.21578526496887207 venv/final-6.0.0rc0
scatter PyArrow 0.21463799476623535 venv/final-6.0.0rc0
scatter PyArrow 0.21288585662841797 venv/final-6.0.0rc0
scatter PyArrow 0.2158827781677246 venv/final-6.0.0rc0
scatter_3d PyArrow 0.1976490020751953 venv/final-6.0.0rc0
scatter_3d PyArrow 0.19295406341552734 venv/final-6.0.0rc0
scatter_3d PyArrow 0.1927039623260498 venv/final-6.0.0rc0
scatter_3d PyArrow 0.19438934326171875 venv/final-6.0.0rc0
scatter_3d PyArrow 0.1904902458190918 venv/final-6.0.0rc0
scatter_3d PyArrow 0.19689702987670898 venv/final-6.0.0rc0
scatter_3d PyArrow 0.1940748691558838 venv/final-6.0.0rc0
scatter_3d PyArrow 0.18998098373413086 venv/final-6.0.0rc0
scatter_3d PyArrow 0.19399380683898926 venv/final-6.0.0rc0
scatter_3d PyArrow 0.19495892524719238 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15680718421936035 venv/final-6.0.0rc0
scatter_polar PyArrow 0.1545419692993164 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15534305572509766 venv/final-6.0.0rc0
scatter_polar PyArrow 0.1578691005706787 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15488791465759277 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15346407890319824 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15784597396850586 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15446209907531738 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15372610092163086 venv/final-6.0.0rc0
scatter_polar PyArrow 0.15546011924743652 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19275903701782227 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.1948070526123047 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19208312034606934 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19500374794006348 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19121384620666504 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19473600387573242 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19703078269958496 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19205403327941895 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19269037246704102 venv/final-6.0.0rc0
scatter_ternary PyArrow 0.19182610511779785 venv/final-6.0.0rc0
line PyArrow 0.21298885345458984 venv/final-6.0.0rc0
line PyArrow 0.21329307556152344 venv/final-6.0.0rc0
line PyArrow 0.21448087692260742 venv/final-6.0.0rc0
line PyArrow 0.20948076248168945 venv/final-6.0.0rc0
line PyArrow 0.2113330364227295 venv/final-6.0.0rc0
line PyArrow 0.2111809253692627 venv/final-6.0.0rc0
line PyArrow 0.21433091163635254 venv/final-6.0.0rc0
line PyArrow 0.21388912200927734 venv/final-6.0.0rc0
line PyArrow 0.21269607543945312 venv/final-6.0.0rc0
line PyArrow 0.21248984336853027 venv/final-6.0.0rc0
line_3d PyArrow 0.19269299507141113 venv/final-6.0.0rc0
line_3d PyArrow 0.19399714469909668 venv/final-6.0.0rc0
line_3d PyArrow 0.19440293312072754 venv/final-6.0.0rc0
line_3d PyArrow 0.19010376930236816 venv/final-6.0.0rc0
line_3d PyArrow 0.19490289688110352 venv/final-6.0.0rc0
line_3d PyArrow 0.19114089012145996 venv/final-6.0.0rc0
line_3d PyArrow 0.1924610137939453 venv/final-6.0.0rc0
line_3d PyArrow 0.1911458969116211 venv/final-6.0.0rc0
line_3d PyArrow 0.19289684295654297 venv/final-6.0.0rc0
line_3d PyArrow 0.1922590732574463 venv/final-6.0.0rc0
area PyArrow 0.21329593658447266 venv/final-6.0.0rc0
area PyArrow 0.21133899688720703 venv/final-6.0.0rc0
area PyArrow 0.2137620449066162 venv/final-6.0.0rc0
area PyArrow 0.21126317977905273 venv/final-6.0.0rc0
area PyArrow 0.2131943702697754 venv/final-6.0.0rc0
area PyArrow 0.21329498291015625 venv/final-6.0.0rc0
area PyArrow 0.21253609657287598 venv/final-6.0.0rc0
area PyArrow 0.21430420875549316 venv/final-6.0.0rc0
area PyArrow 0.21279525756835938 venv/final-6.0.0rc0
area PyArrow 0.2118232250213623 venv/final-6.0.0rc0
bar PyArrow 0.7351770401000977 venv/final-6.0.0rc0
bar PyArrow 0.7408590316772461 venv/final-6.0.0rc0
bar PyArrow 0.7395851612091064 venv/final-6.0.0rc0
bar PyArrow 0.7369790077209473 venv/final-6.0.0rc0
bar PyArrow 0.7401900291442871 venv/final-6.0.0rc0
bar PyArrow 0.7368028163909912 venv/final-6.0.0rc0
bar PyArrow 0.7373173236846924 venv/final-6.0.0rc0
bar PyArrow 0.7443900108337402 venv/final-6.0.0rc0
bar PyArrow 0.7440469264984131 venv/final-6.0.0rc0
bar PyArrow 0.7333691120147705 venv/final-6.0.0rc0
bar_polar PyArrow 0.6875860691070557 venv/final-6.0.0rc0
bar_polar PyArrow 0.6857790946960449 venv/final-6.0.0rc0
bar_polar PyArrow 0.707103967666626 venv/final-6.0.0rc0
bar_polar PyArrow 0.6907000541687012 venv/final-6.0.0rc0
bar_polar PyArrow 0.6900949478149414 venv/final-6.0.0rc0
bar_polar PyArrow 0.6848950386047363 venv/final-6.0.0rc0
bar_polar PyArrow 0.6817770004272461 venv/final-6.0.0rc0
bar_polar PyArrow 0.6899871826171875 venv/final-6.0.0rc0
bar_polar PyArrow 0.688615083694458 venv/final-6.0.0rc0
bar_polar PyArrow 0.6817898750305176 venv/final-6.0.0rc0
violin PyArrow 0.7361772060394287 venv/final-6.0.0rc0
violin PyArrow 0.7393600940704346 venv/final-6.0.0rc0
violin PyArrow 0.7389709949493408 venv/final-6.0.0rc0
violin PyArrow 0.7432079315185547 venv/final-6.0.0rc0
violin PyArrow 0.7366480827331543 venv/final-6.0.0rc0
violin PyArrow 0.737541913986206 venv/final-6.0.0rc0
violin PyArrow 0.741178035736084 venv/final-6.0.0rc0
violin PyArrow 0.738631010055542 venv/final-6.0.0rc0
violin PyArrow 0.7387089729309082 venv/final-6.0.0rc0
violin PyArrow 0.7376658916473389 venv/final-6.0.0rc0
box PyArrow 0.7385349273681641 venv/final-6.0.0rc0
box PyArrow 0.7382428646087646 venv/final-6.0.0rc0
box PyArrow 0.7311820983886719 venv/final-6.0.0rc0
box PyArrow 0.7378580570220947 venv/final-6.0.0rc0
box PyArrow 0.7366418838500977 venv/final-6.0.0rc0
box PyArrow 0.7394309043884277 venv/final-6.0.0rc0
box PyArrow 0.7340271472930908 venv/final-6.0.0rc0
box PyArrow 0.736314058303833 venv/final-6.0.0rc0
box PyArrow 0.7359652519226074 venv/final-6.0.0rc0
box PyArrow 0.7379751205444336 venv/final-6.0.0rc0
ecdf PyArrow 0.4299337863922119 venv/final-6.0.0rc0
ecdf PyArrow 0.42231106758117676 venv/final-6.0.0rc0
ecdf PyArrow 0.4189329147338867 venv/final-6.0.0rc0
ecdf PyArrow 0.41731905937194824 venv/final-6.0.0rc0
ecdf PyArrow 0.420180082321167 venv/final-6.0.0rc0
ecdf PyArrow 0.4210941791534424 venv/final-6.0.0rc0
ecdf PyArrow 0.42278289794921875 venv/final-6.0.0rc0
ecdf PyArrow 0.4218118190765381 venv/final-6.0.0rc0
ecdf PyArrow 0.42760610580444336 venv/final-6.0.0rc0
ecdf PyArrow 0.4176950454711914 venv/final-6.0.0rc0
strip PyArrow 0.7435052394866943 venv/final-6.0.0rc0
strip PyArrow 0.7430710792541504 venv/final-6.0.0rc0
strip PyArrow 0.73661208152771 venv/final-6.0.0rc0
strip PyArrow 0.7427866458892822 venv/final-6.0.0rc0
strip PyArrow 0.7383072376251221 venv/final-6.0.0rc0
strip PyArrow 0.734691858291626 venv/final-6.0.0rc0
strip PyArrow 0.739691972732544 venv/final-6.0.0rc0
strip PyArrow 0.7354738712310791 venv/final-6.0.0rc0
strip PyArrow 0.744013786315918 venv/final-6.0.0rc0
strip PyArrow 0.7384190559387207 venv/final-6.0.0rc0
histogram PyArrow 0.17608380317687988 venv/final-6.0.0rc0
histogram PyArrow 0.1736431121826172 venv/final-6.0.0rc0
histogram PyArrow 0.1736619472503662 venv/final-6.0.0rc0
histogram PyArrow 0.17439484596252441 venv/final-6.0.0rc0
histogram PyArrow 0.17504000663757324 venv/final-6.0.0rc0
histogram PyArrow 0.1732180118560791 venv/final-6.0.0rc0
histogram PyArrow 0.17726588249206543 venv/final-6.0.0rc0
histogram PyArrow 0.17609691619873047 venv/final-6.0.0rc0
histogram PyArrow 0.1756901741027832 venv/final-6.0.0rc0
histogram PyArrow 0.17323803901672363 venv/final-6.0.0rc0
pie PyArrow 4.49330472946167 venv/final-6.0.0rc0
pie PyArrow 4.4626359939575195 venv/final-6.0.0rc0
pie PyArrow 4.4765708446502686 venv/final-6.0.0rc0
pie PyArrow 4.482862710952759 venv/final-6.0.0rc0
pie PyArrow 4.491479158401489 venv/final-6.0.0rc0
pie PyArrow 4.468297958374023 venv/final-6.0.0rc0
pie PyArrow 4.476175308227539 venv/final-6.0.0rc0
pie PyArrow 4.491228103637695 venv/final-6.0.0rc0
pie PyArrow 4.483382940292358 venv/final-6.0.0rc0
pie PyArrow 4.487051963806152 venv/final-6.0.0rc0
funnel PyArrow 0.1808919906616211 venv/final-6.0.0rc0
funnel PyArrow 0.18192100524902344 venv/final-6.0.0rc0
funnel PyArrow 0.17935919761657715 venv/final-6.0.0rc0
funnel PyArrow 0.17809581756591797 venv/final-6.0.0rc0
funnel PyArrow 0.17795705795288086 venv/final-6.0.0rc0
funnel PyArrow 0.18044686317443848 venv/final-6.0.0rc0
funnel PyArrow 0.17873811721801758 venv/final-6.0.0rc0
funnel PyArrow 0.1800839900970459 venv/final-6.0.0rc0
funnel PyArrow 0.17740893363952637 venv/final-6.0.0rc0
funnel PyArrow 0.17767596244812012 venv/final-6.0.0rc0
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment