Prerequisite: conda and/or miniconda are already installed
- Create a conda environment.
$ conda create -n dlib python=3.8 cmake ipython- Activate the environment.
$ conda activate dlib- Install CUDA and cuDNN with
condausing nvidia channel
$ conda install cuda cudnn -c nvidiaThen find the path to the nvcc of this environment. We will use this path for the build step below
$which nvcc
/path/to/your/miniconda3/envs/dlib/bin/- Install dlib. Clone and build dlib from source
$ git clone https://github.com/davisking/dlib.git
$ cd dlib
$ mkdir build
$ cd build
$ cmake .. -DDLIB_USE_CUDA=1 -DUSE_AVX_INSTRUCTIONS=1 -DCUDAToolkit_ROOT=/path/to/your/miniconda3/envs/dlib/bin/
$ cmake --build .
$ cd ..
$ python setup.py install --set DLIB_USE_CUDA=1- Test dlib
(dlib) $ ipython
Python 3.8.12 (default, Oct 12 2021, 13:49:34)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.27.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: import dlib
In [2]: dlib.DLIB_USE_CUDA
Out[2]: True
In [3]: print(dlib.cuda.get_num_devices())
1
Nice guide! In my case I had to set
export CUDAHOSTCXX=/usr/bin/g++because otherwise I got the following error: