Skip to content

Instantly share code, notes, and snippets.

@nithyadurai87
Last active December 12, 2019 14:54
Show Gist options
  • Select an option

  • Save nithyadurai87/75e91a68e07d2e375aaf3ba4c87ef49a to your computer and use it in GitHub Desktop.

Select an option

Save nithyadurai87/75e91a68e07d2e375aaf3ba4c87ef49a to your computer and use it in GitHub Desktop.
from sklearn import datasets
import numpy as np
X_data = np.array([[0.4,0.3],[0.6,0.8],[0.7,0.5],[0.9,0.2]])
Y_data = np.array([[1],[1],[1],[0]])
X = X_data.T
Y = Y_data.T
W = np.zeros((X.shape[0], 1))
b = 0
num_samples = float(X.shape[1])
for i in range(1000):
Z = np.dot(W.T,X) + b
pred_y = 1/(1 + np.exp(-Z))
if(i%100 == 0):
print("cost after %d epoch:"%i)
print (-1/num_samples *np.sum(Y*np.log(pred_y) + (1-Y)*(np.log(1-pred_y))))
dW = (np.dot(X,(pred_y-Y).T))/num_samples
db = np.sum(pred_y-Y)/num_samples
W = W - (0.1 * dW)
b = b - (0.1 * db)
print (W,b)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment