> joined$Funding <- as.factor(joined$Funding) > joined$Public.Private <- as.factor(joined$Public.Private) > > summary(joined$Funding) aPublic Directly funded Locally funded 5153 382 172 Not in CS funding model Private 7 1667 > summary(joined$Public.Private) PRIVATE PUBLIC 1649 5732 > > model0 <- cbind(PBE.,Enrollment-PBE.) ~ (1|County) + (1|City) + (1|School) > model1 <- cbind(PBE.,Enrollment-PBE.) ~ (1|County) + (1|City) + (1|School) + Funding > > fit0 <- glmer(model0, data=joined, family="binomial") > fit1 <- glmer(model1, data=joined, family="binomial") > > anova(fit0) Analysis of Variance Table Df Sum Sq Mean Sq F value > anova(fit1) Analysis of Variance Table Df Sum Sq Mean Sq F value Funding 4 523.87 130.97 130.97 > anova(fit0,fit1) Data: joined Models: fit0: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) + fit0: (1 | School) fit1: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) + fit1: (1 | School) + Funding Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) fit0 4 25964 25991 -12978 25956 fit1 8 25515 25570 -12749 25499 456.94 4 < 2.2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > > summary(fit1) Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [glmerMod] Family: binomial ( logit ) Formula: cbind(PBE., Enrollment - PBE.) ~ (1 | County) + (1 | City) + (1 | School) + Funding Data: joined AIC BIC logLik deviance df.resid 25514.8 25569.7 -12749.4 25498.8 6974 Scaled residuals: Min 1Q Median 3Q Max -1.4256 -0.6272 -0.1870 0.2439 2.0957 Random effects: Groups Name Variance Std.Dev. School (Intercept) 1.1152 1.0560 City (Intercept) 0.8674 0.9314 County (Intercept) 0.8289 0.9104 Number of obs: 6982, groups: School, 6978; City, 919; County, 58 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.81965 0.13730 -27.819 <2e-16 *** FundingDirectly funded 1.34812 0.07698 17.513 <2e-16 *** FundingLocally funded 1.04913 0.11150 9.410 <2e-16 *** FundingNot in CS funding model 0.98645 0.61510 1.604 0.109 FundingPrivate 0.75254 0.04815 15.630 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1