This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Model Eğitimleri. | |
| #MultinomialNB Best random_state=3305 | |
| X_train, X_test, y_train, y_test = train_test_split(ogrenme_seti.iloc[:, 0:4], ogrenme_seti.iloc[:,-1:], test_size=0.25,random_state=3305) | |
| clf.fit(X_train,y_train.values.ravel()) | |
| y_pred_test = clf.predict(X_test) | |
| print("Naive Bayes::\n", confusion_matrix(y_test,y_pred_test), "\n") | |
| f1_1 = f1_score(y_test,y_pred_test,average='macro') | |
| print(classification_report(y_test,y_pred_test)) | |
| print("Accuracy: ",accuracy_score(y_test,y_pred_test)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Model Tanımları | |
| clf = MultinomialNB() | |
| lr = LogisticRegression() | |
| dtc = DecisionTreeClassifier() | |
| rfc = RandomForestClassifier() | |
| gradient = GradientBoostingClassifier() | |
| xgb = XGBClassifier() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Feature Normalization | |
| #Kelime Sayısı Normalizasiyonu | |
| kelsay_normal = [] | |
| for i in ogrenme_seti['kelsay']: | |
| normal = (i - ogrenme_seti['kelsay'].min()) / (ogrenme_seti['kelsay'].max() - ogrenme_seti['kelsay'].min()) | |
| kelsay_normal.append(normal) | |
| #Set'e eklenme | |
| ogrenme_seti['kelsay'] = kelsay_normal |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Veri yükleme | |
| ogrenme_seti = pd.read_csv('set/ogrenme_seti.csv', sep=',') | |
| corpus = pd.read_csv('set/hepsiburada_corpus.csv', sep=';') | |
| #Veriler arasında farklar olduğu için sep değişkenleri dosyadan dosyaya değişmekte. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Gerekli Kütüphanelerin import edilmesi | |
| import warnings | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| from sklearn.metrics import classification_report, f1_score, confusion_matrix, accuracy_score, roc_auc_score,roc_curve, precision_score, recall_score | |
| from sklearn.model_selection import cross_val_score | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn.tree import DecisionTreeClassifier | |
| from sklearn.naive_bayes import MultinomialNB |
NewerOlder