Skip to content

Instantly share code, notes, and snippets.

@paulomann
Last active October 31, 2019 01:12
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save paulomann/60003d4a7f54c8b92e467e1f0a2d7208 to your computer and use it in GitHub Desktop.
Save paulomann/60003d4a7f54c8b92e467e1f0a2d7208 to your computer and use it in GitHub Desktop.
class Bottleneck(nn.Module):
''' Standard bottleneck block
input = inplanes * H * W
middle = planes * H/stride * W/stride
output = 4*planes * H/stride * W/stride
'''
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class QuantizableBottleneck(Bottleneck):
expansion = 4
def __init__(self, *args, **kwargs):
super(QuantizableBottleneck, self).__init__(*args, **kwargs)
self.skip_add_relu = nn.quantized.FloatFunctional()
self.relu1 = nn.ReLU(inplace=False)
self.relu2 = nn.ReLU(inplace=False)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = self.skip_add_relu.add_relu(out, identity)
return out
def fuse_model(self):
fuse_modules(self, [['conv1', 'bn1', 'relu1'],
['conv2', 'bn2', 'relu2'],
['conv3', 'bn3']], inplace=True)
if self.downsample:
torch.quantization.fuse_modules(self.downsample, ['0', '1'], inplace=True)
class ResNet(nn.Module):
""" A standard ResNet.
"""
def __init__(self, block, layers, fc_out, model_name, self_similarity_radius=None, self_similarity_version=2):
nn.Module.__init__(self)
self.model_name = model_name
# default values for a network pre-trained on imagenet
self.rgb_means = [0.485, 0.456, 0.406]
self.rgb_stds = [0.229, 0.224, 0.225]
self.input_size = (3, 224, 224)
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], self_similarity_radius=self_similarity_radius, self_similarity_version=self_similarity_version)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, self_similarity_radius=self_similarity_radius, self_similarity_version=self_similarity_version)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, self_similarity_radius=self_similarity_radius, self_similarity_version=self_similarity_version)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, self_similarity_radius=self_similarity_radius, self_similarity_version=self_similarity_version)
reset_weights(self)
self.fc = None
self.fc_out = fc_out
if self.fc_out > 0:
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(512 * block.expansion, fc_out)
self.fc_name = 'fc'
def _make_layer(self, block, planes, blocks, stride=1, self_similarity_radius=None, self_similarity_version=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes=planes, stride=stride, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
if self_similarity_radius:
if self_similarity_version == 1:
from . self_sim import SelfSimilarity1
layers.append(SelfSimilarity1(self_similarity_radius, self.inplanes))
else:
from . self_sim import SelfSimilarity2
layers.append(SelfSimilarity2(self_similarity_radius, self.inplanes))
return nn.Sequential(*layers)
def forward(self, x, out_layer=0):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if out_layer==-1:
return x, self.layer4(x)
x = self.layer4(x)
if self.fc_out > 0:
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def fuse_model(self):
r"""Fuse conv/bn/relu modules in resnet models
Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization.
Model is modified in place. Note that this operation does not change numerics
and the model after modification is in floating point
"""
fuse_modules(self, ['conv1', 'bn1', 'relu'], inplace=True)
for m in self.modules():
if type(m) == QuantizableBottleneck:
m.fuse_model()
class ResNet_RMAC(ResNet):
""" ResNet for RMAC (without ROI pooling)
"""
def __init__(self, block, layers, model_name, out_dim=2048, norm_features=False,
pooling='gem', gemp=3, center_bias=0,
dropout_p=None, without_fc=False, **kwargs):
ResNet.__init__(self, block, layers, 0, model_name, **kwargs)
self.norm_features = norm_features
self.without_fc = without_fc
self.pooling = pooling
self.center_bias = center_bias
if pooling == 'max':
self.adpool = nn.AdaptiveMaxPool2d(output_size=1)
elif pooling == 'avg':
self.adpool = nn.AdaptiveAvgPool2d(output_size=1)
elif pooling.startswith('gem'):
self.adpool = GeneralizedMeanPoolingP(norm=gemp)
else:
raise ValueError(pooling)
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
self.fc = nn.Linear(512 * block.expansion, out_dim)
self.fc_name = 'fc'
self.feat_dim = out_dim
self.detach = False
def _forward(self, x):
bs, _, H, W = x.shape
x = ResNet.forward(self, x)
if self.dropout is not None:
x = self.dropout(x)
if self.detach:
# stop the back-propagation here, if needed
x = Variable(x.detach())
x = self.id(x) # fake transformation
if self.center_bias > 0:
b = self.center_bias
bias = 1 + torch.FloatTensor([[[[0,0,0,0],[0,b,b,0],[0,b,b,0],[0,0,0,0]]]]).to(x.device)
bias = torch.nn.functional.interpolate(bias, size=x.shape[-2:], mode='bilinear', align_corners=True)
x = x*bias
# global pooling
x = self.adpool(x)
if self.norm_features:
x = l2_normalize(x, axis=1)
x.squeeze_()
if not self.without_fc:
x = self.fc(x)
x = l2_normalize(x, axis=-1)
return x
forward = _forward
class QuantizableRMAC(ResNet_RMAC):
def __init__(self, *args, **kwargs):
super(QuantizableRMAC, self).__init__(*args, **kwargs)
self.quant = torch.quantization.QuantStub()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self._forward(x)
x = self.dequant(x)
return x
def fuse_model(self):
super().fuse_model()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment